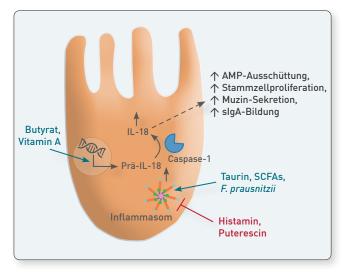


Interleukin 18 als Immun-Homöostasemarker der Darmschleimhaut

IL-18 ist zunächst ein proinflammatorisches Zytokin, das wie andere Zytokine bei Entzündungsreaktionen vermehrt ausgeschüttet wird. Die Besonderheit ist aber, dass es nicht nur bei aktiver Entzündung, sondern auch kontinuierlich von Darmepithelzellen gebildet und sekretiert wird. Diese Ausschüttung im nicht-entzündeten Darm hat wichtige Funktionen bei der Aufrechterhaltung der Immunhomöostase der Darmschleimhaut. Genau wie beim IL-10 sind deshalb nicht nur erhöhte Werte auffällig, sondern auch verminderte, die eine defizitäre Darmschleimhaut-Homöostase anzeigen.

IL-18 als Barriere- und Immunregulator im nichtentzündeten Darm

Die regulatorische Rolle von IL-18 bei Darmentzündungen wurde durch die Beobachtung offenbar, dass Polymorphismen in IL-18- und IL-18-Rezeptor-Genen zu einer erhöhten Anfälligkeit für die Entwicklung chronisch-entzündlicher Darmerkrankungen (CED) führen.


IL-18 reguliert die Darmbarriere

Es konnte gezeigt werden, dass IL-18 eine stimulierende Wirkung auf die **Reifung von epithelialen Stammzellen** besitzt. Das spielt besonders für die schnelle Darmepithel-Regeneration nach einer Schädigung des Gewebes, z.B. nach einem Infekt, eine große Rolle. Es gibt außerdem Hinweise darauf, dass IL-18 die **Muzin-Sekretion**, die für eine stabile, die Epithelzellen schützende Schleimschicht sorgt, sowie die Bildung von **neutralisierenden IgA-Schleimhautantikörpern** positiv beeinflusst.

IL-18 und Darmmikrobiota beeinflussen sich gegenseitig

Zwischen der Mikrobiota und IL-18 besteht eine wechselseitige Beziehung. Defekte in der IL-18-Bildung führen zu einer verminderten Ausschüttung von antimikrobiellen Peptiden (AMP) durch die Paneth-Zellen der Darmschleimhaut. AMPs sind wichtig für die Abwehr von pathogenen Erregern, sie regulieren aber auch die Zusammensetzung der "normalen" Darmmikrobiota. Ihre kontinuierliche, durch IL-18 stimulierte Ausschüttung ist deshalb essenziell für den Erhalt der bakteriellen Symbiose.

Die Zusammensetzung der Darmbakterien beeinflusst wiederum die IL-18-Produktion: Bakterielle Stoffwechselprodukte wie die biogenen Amine **Histamin oder Puterescin hemmen die IL-18-Reifung im Dickdarm**. Histamin und Puterescin werden von proteolytischen Bakterien (*Proteobacteria*) gebildet, die häufig bei Dysbiosen stark vermehrt sind. Dagegen korrelieren kurzkettige Fettsäuren (Acetat, Butyrat und Propionat) und die Mengen butyratbildender Bakterien wie *Faecalibacterium prausnitzii* sowie *Akkermanisa muciniphila* positiv mit IL-18. Butyrat sowie Vitamin A stimulieren die Bildung von IL-18.

Abb. 1 Regulation und Funktion von IL-18 in Abwesenheit von Entzündung. IL-18 liegt in der Epithelzelle als prä-IL-18 vor und wird erst durch das Enzym Caspase-1 in seine aktive Form überführt. Sowohl die Expression als auch die Reifung von IL-18 wird u.a. durch Darmbakterien und ihre Stoffwechselprodukte heeinflusst

IL-18 als Immunstimulator im entzündeten Darm

Bei einer Infektion oder einer Gewebeschädigung im Darmepithel stimuliert IL-18 die Immunantwort. Es induziert die Ausschüttung von IFN- γ in Th1-Lymphozyten und NK-Zellen und verstärkt so die Th1-Antwort. Zusammen mit IL-12 kann es außerdem die Lebensdauer und die Chemokin-Ausschüttung von Makrophagen erhöhen.

Anders als im gesunden Darm hat IL-18 bei vorhandener Mukosainflammation barriereschädigende Funktionen: Hohe Spiegel von IL-18 hemmen die Reifung von Becherzellen, was zu einer verringerten Muzinbildung führt. Hohe Mengen von IL-18 reduzieren außerdem die Expression des *tight-junction*-Proteins Occludin. Das verstärkt die Einwanderung von Granulozyten in die Darmschleimhaut.

Wann sollte IL-18 im Stuhl gemessen werden?

Im Stuhl messbares IL-18 stammt, im Unterschied zu anderen Zytokinen, in erster Linie aus dem Darmepithel selbst. IL-18 ist damit ein Marker für die intakte Immunregulation der Darmschleimhaut (Immunhomöostase).

Zu niedrige Werte können eine Dysbiose-Entwicklung und Permeabilitätsstörungen fördern, die Schleimhaut weniger resilient gegenüber Infektionen machen und die Reparatur von Gewebeschäden stören.

Zu hohe IL18-Werte sind dagegen hinweisend auf ein proentzündliches Geschehen, was oft im Kontext mit anderen Zytokinen im Stuhl oder granulozytären Entzündungsmarkern steht.

Haben Sie Fragen? Unser Service Team beantwortet sie gerne unter +49 30 77001-220.

IMD Labor Berlin	Ärztlicher Befundbericht		
Untersuchung	Ergebnis	Einheit	Referenz- bereich
Zytokinprofil im Stuhl (ECLIA)			
IL-1b im Stuhl	9,81	pg/g	< 61
IL-6 im Stuhl	47,3	pg/g	< 67
TNF alpha im Stuhl	40,8	pg/g	< 58
IL-8 im Stuhl	21,6	pg/g	< 162
IFN gamma im Stuhl	103	pg/g	< 253
IL-4 im Stuhl	3,94	pg/g	< 7
IL-10 im Stuhl	12,3	pg/g	8 - 30
Calprotectin im Stuhl (ELISA)	14	pg/g	< 50
IL-18 im Stuhl (ECLIA)	32,5	pg/g	52 - 393
ß-Defensin 2 (ELISA)	5	ng/g	8 - 60
sekretorisches IgA (ELISA)	558	μg/g	510 - 2040

Vermindertes IL-18 weist auf eine geringe Resilienz der Darmschleimhaut gegenüber Pathogenen und Gewebeschädigung hin. Dauerhaft niedrige Werte können Dysbiose-Entwicklung und Permeabilitätsstörungen fördern.

Vermindertes ß-Defensin 2 weist auf eine abgeschwächte Immunantwort und somit eine erhöhte Infektanfälligkeit hin.

Abb. 2 Befundbeispiel einer verminderten Schleimhaut-Resilienz in Abwesenheit einer aktiven Entzündung. Die geringen Mengen von IL-18 und β -Defensin 2 können u. a. die Entstehung einer Dysbiose begünstigen, da nicht ausreichend AMP für die Aufrechterhaltung des bakteriellen Gleichgewichts zur Verfügung stehen.

Kann vermindertes IL-18 durch Therapie erhöht werden?

Die Normalisierung von IL-18 im Stuhl sollte eine Basis der Darmschleimhauttherapie sein. Kurzkettige Fettsäuren, und damit in Zusammenhang stehend, eine ballaststoffreiche Ernährung sowie Taurin können die IL-18-Reifung über die Aktivierung des Inflammasoms fördern. Desweiteren erhöhen Vitamin A sowie Butyrat die Expression des IL-18-Gens (Abb. 1). Klinische Studien mit genauen Dosierungsanweisungen gibt es allerdings derzeit noch nicht.

Indikationen für die Messung von IL-18 im Stuhl

Ein IL-18-Defizit kann ursächlich beteiligt sein bei:

- persistierend erhöhter Schleimhautpermeabilität (leaky qut)
- therapieresistenter Dysbiose
- persistierender Mukosainflammation (↑ Zytokine, ↑ Histamin)
- häufigen und wiederkehrenden Darminfekten

Material

Für die Stuhlanalyse benötigen wir zwei zu 2/3 befüllte Stuhlröhrchen. Wie immer bei der Stuhldiagnostik muss der Transport der Stuhlröhrchen ins Labor per Kurier (temperaturstabilisiert) und innerhalb von 48 h erfolgen. Bitte ordern Sie unseren kostenfreien Kurier unter +49 30 77001-450.

Abrechnung

Eine Abrechnung ist nur im privatärztlichen Bereich gegeben. Für Selbstzahler kostet die Bestimmung 43,72 €.

Literatur

- Fagundes, Raphael R., et al. "Faecalibacterium prausnitzii promotes intestinal epithelial IL-18 production through activation of the HIF1 α pathway." Frontiers in Microbiology 14 (2023): 1298304.
- Hirota, Simon A., et al. "NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis." Inflammatory bowel diseases 17.6 (2011).
- Levy, Maayan, et al. "Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling." Cell 163.6 (2015).
- Macia, Laurence, et al. "Metabolite-sensing receptors GPR43 and GP-R109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome." Nature communications 6.1 (2015).
- Pu, Zhichen, et al. "Dual roles of IL-18 in colitis through regulation of the function and quantity of goblet cells." International journal of molecular medicine 43 6 (2019)
- Zaki, Md Hasan, et al. "The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis." Immunity 32.3 (2010).