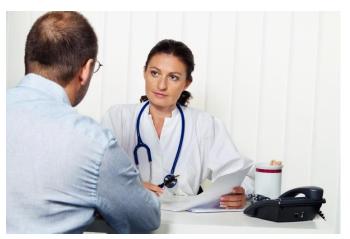
Fehlregulationen der neuroendokrinen Stressachse: von Einschlafproblemen bis zu Immundefekten

Dr. Bella Roßbach und Christine Lenz

IMD Berlin MVZ



Stress im Alltag

Was ist Stress?

- Stress gehört zum Leben dazu
- Körperliche und psychische Reaktion auf innere oder äußere Anforderungen
- Aktiviert das sogenannte "Kampf-oder-Flucht"-System im Körper
- macht uns leistungsfähig und hilft Herausforderungen zu meistern

Definition im Wörterbuch:

Erhöhte körperliche oder seelische Anspannung, Belastung, die bestimmte Reaktionen hervorruft und zu Schädigungen der Gesundheit führen kann.

Stress wirkt sich je nach Wahrnehmung unterschiedlich aus

Positiver Stress = Eustress

- Motiviert,
- spornt an
- Unterstützt bei Bewältigung von Herausforderungen

Planung einer Feier; Schwangerschaft

negativer Stress = Distress

- Überforderung
- Belastung
- Unterforderung

Beispiel:

Konkurrenz am Arbeitsplatz, Zeitdruck

Verlust von Bezugspersonen

Wechselspiel zwischen Unterforderung, positiver Stresszone und Überforderung

Unterforderung

Müdigkeit
Frustration
Apathie
Langeweile

Leistungsfähigkeit

Positive Stresszone

Leistungsbereitschaft Hohe Aufmerksamkeit Fokus Rationales Denken

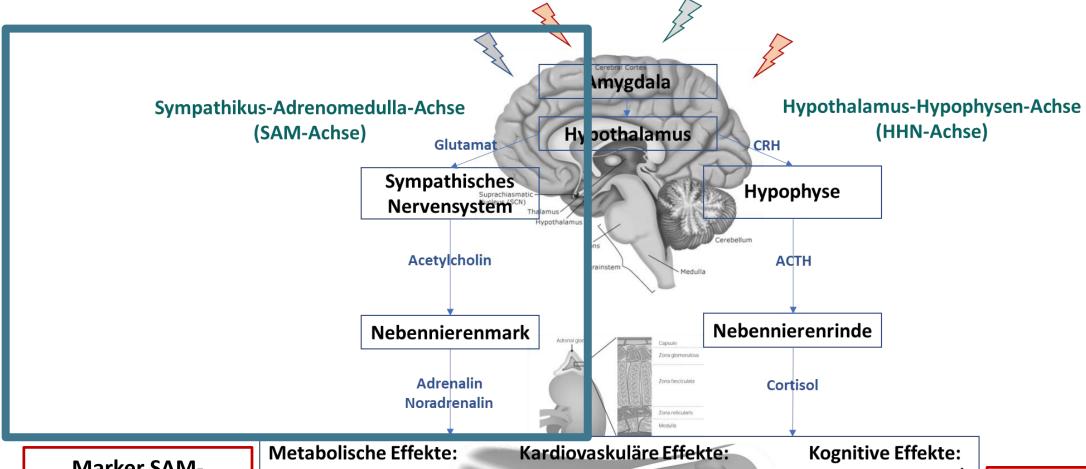
Überforderung

Erschöpfung Ängste Panik Blockaden

Akuter versus chronischem Stress

Akuter Stress

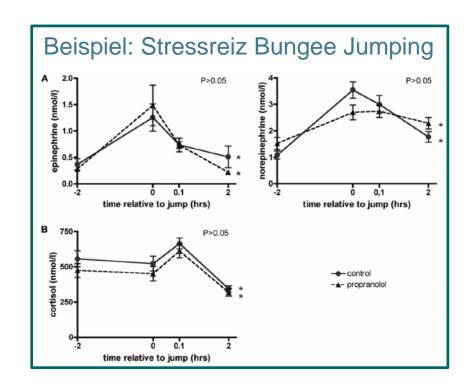
- Kurzfristig
- Direkte Ereignisse (Prüfung, Vortrag)
- Umwelteinflüsse (enge Räume, Hitze)

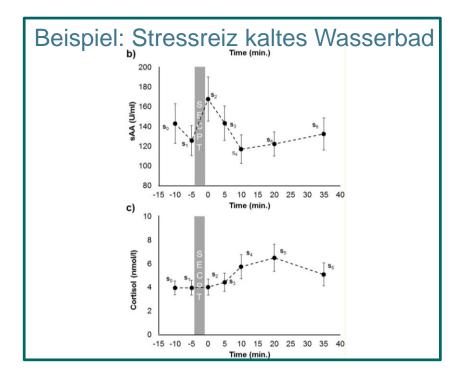

Chronischer Stress

- Langanhaltend
- Fortlaufende Ereignisse
- Krankheiten, dauerhafte hohe Arbeitsbelastung, familiäre Umstände z.B. Pflege von Angehörigen

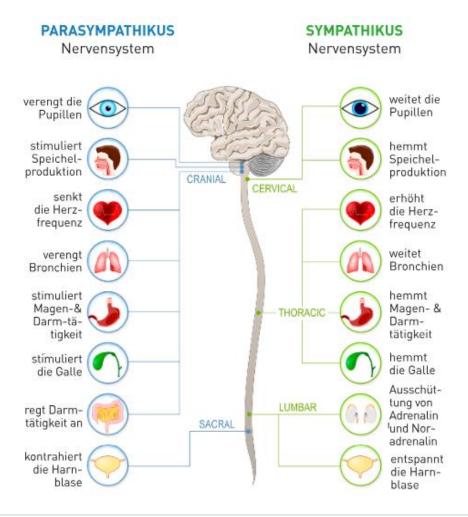
Physiologische Mechanismen der Stressreaktion

Marker SAM-Achsen-Aktivität Katecholamine Alpha-Amylase Metabolische Effekt Eiweiß-Abbau † Lipolyse † Gluconeogenese † Atmung † Kardiovaskuläre Effekte:
Blutdruck 1
Herzschlag 1
Immunsystem 1
Verdauung 1


Kognitive Effekte:
Aufmerksamkeit 1
Tunnelblick 1
Nierenaktivität 1
Libido 1


Marker HHN-Achsen-Aktivität Cortisol

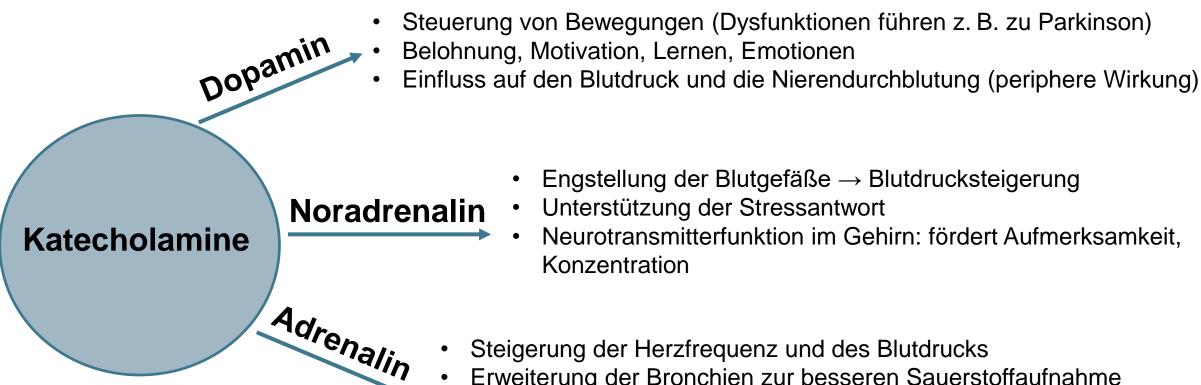
Kinetik der Stressreaktion


- 1. Welle: Direkt, primär physiologische Reaktion gesteuert durch Katecholamine: Fight-or-Flight-Reaktion (Adrenalin, Noradrenalin)
- 2. Welle: Zeitverzögert (Peak nach 20min), hält Alarmbereitschaft aufrecht, gesteuert durch Cortisol

Vegetatives Nervensystem: Zusammenspiel Sympathikus und Parasympathikus

Elektrophysiologische Methoden zur Messung der Balance von Sympathikus und Parasympathikus

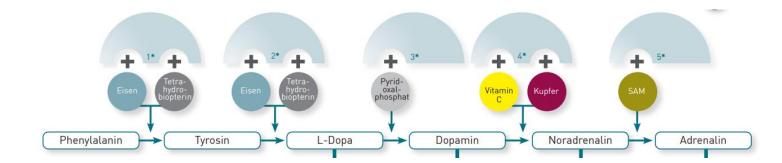
Beispiele für Biofeedbackgeräte


- Smartwatch, Fitness-Tracker
- Apps
- Oura Ring
- Herzratenvariabilität (HRV)
- Elektrokardiogramm (EKG)
- Galvanische Hautreaktion (GSR)
- Muskelspannung (EMG)
- Atmung

Anwendungsbereiche

- Sport
- Entspannung und Achtsamkeit
- Medizinisch-therapeutisch
- Psychologisch

Aufgaben und Effekte der Katecholamine


- Erweiterung der Bronchien zur besseren Sauerstoffaufnahme
- Mobilisierung von Energiereserven (z. B. Glukosefreisetzung aus der Leber)
- Hemmung z. B. der Verdauung bei Sympathikus-Aktivierung

Messung der Balance von Sympathikus und Parasympathikus im Labor

Messung von

- Dopamin
- Noradrenalin
- Adrenalin

Blut: Katecholamine sehr kurze Halbwertszeit

Enzyme*

- 1* Phenylalaninhydroxylase
- 2* Tyrosinhydroxylase
- 3* L-Aminosäuredecarboxylase
- 4* Dopamin-ß-Hydroxylase
- 5* Phenylethanolamin-N-Methytransferase

VNS-Stressprofil im 2. Morgenurin

Liefert morgendlich sympathischen Status

Weniger Belastung für den Körper (Angst/ Stress der Blutentnahme entfällt)

Katecholamine im Urin stammen überwiegend aus peripheren Nervensystem und Nebenniere

NICHT aus dem Gehirn!!

Befundbeispiel VNS-Stressprofil im 2. Morgenurin

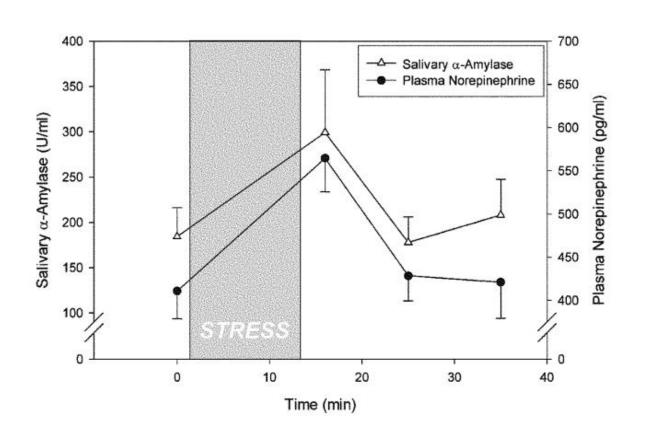
Analysen	Ergebn	is	Referenzbereich
Kreatinin im Urin	62	mg/dl	28 - 217
Dopamin	89,4	μg/l	
Dopamin kreatininbezogen	144	μg/g Krea	120 - 230
Adrenalin	4,9	μg/l	
Adrenalin kreatininbezogen	7,85	μg/g Krea	5 - 14
Noradrenalin	23,4	μg/l	
Noradrenalin kreatininbezogen	37,7	μg/g Krea	30 - 58
Noradrenalin/Adrenalin Quotient	4,8		3 - 6

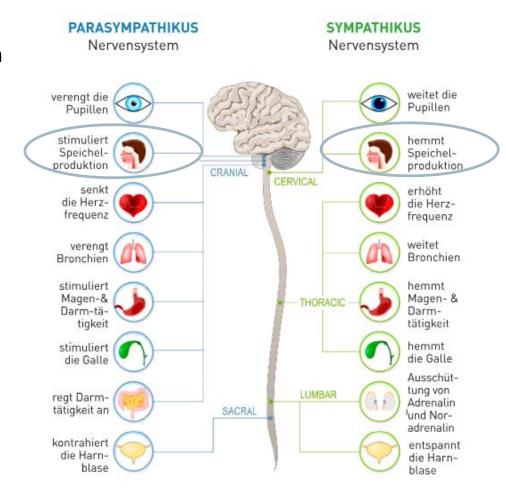
Befundinterpretation:

Sympathikus-Adrenomedulla-Achse (SAM)

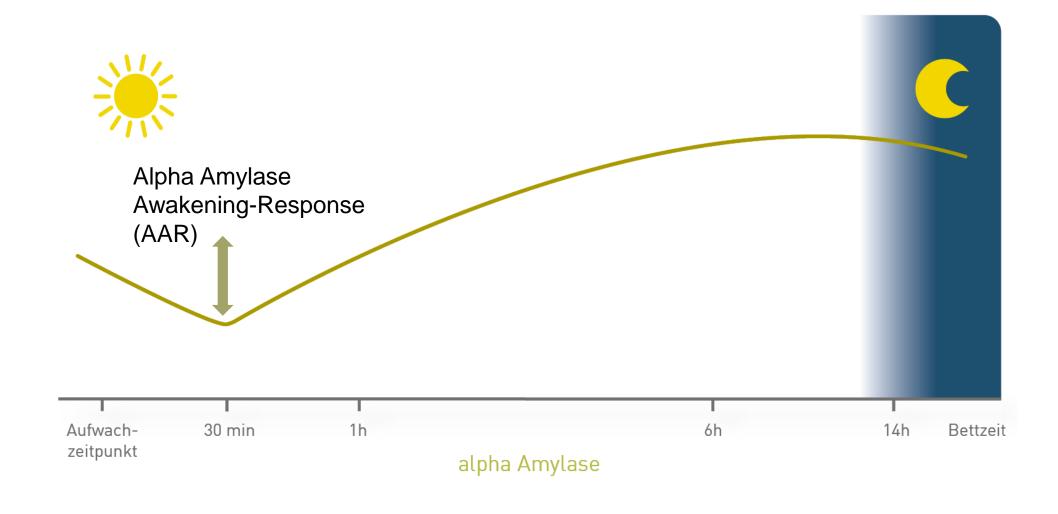
Noradrenalin/Adrenalin-Quotient:

< 3 Noradrenalindefizit


7-12 erhöhte Noradrenalinausschüttung


>12 deutlicher Noradrenalinüberschuss

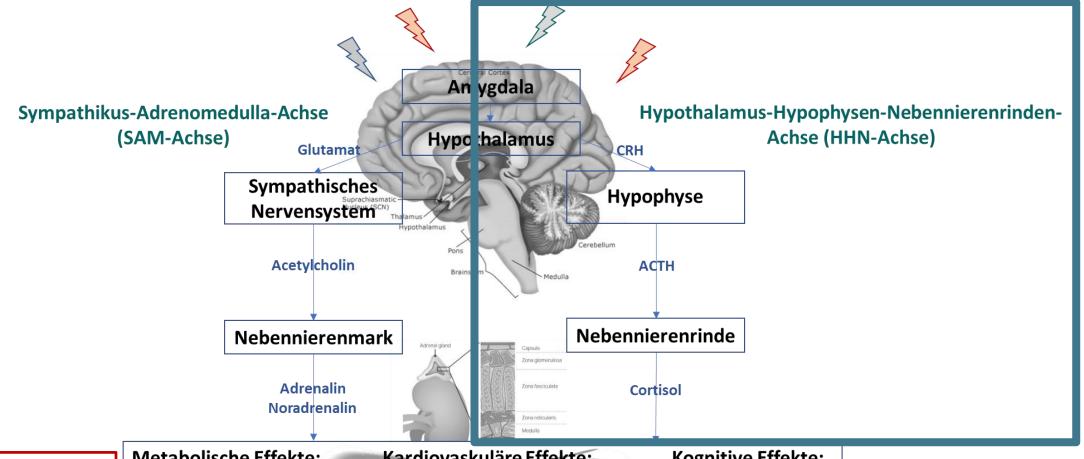
Alpha-Amylase - Biomarker für die Aktivität der SAM-Achse


- Surrogatmarker f
 ür Stress
- Sekretion durch Noradrenalin via β1-Adrenorezeptoren auf Azinuszellen

Alpha- Amylase Gesamt-Tagesrhythmik Speichel

Befundbeispiel Alpha Amylase Tagesprofil im Speichel

Alpha Amylase Tagesgesamtprofil im Speichel (Photo)				
Analysen	Ergebnis	Referenzbereich		
Alpha Amylase 0 min	236,0 U/ml	< 101,3		
Alpha Amylase 30 min	58,9 U/ml	< 101,3		
Alpha Amylase 1 h	46,5 U/ml	< 101,3		
Alpha Amylase 6 h	157,0 U/ml	58,4 - 206,0		
Alpha Amylase 14 h	168,0 U/ml	36,0 - 208,4		
Awakening-Response	-75,0 %	< 30		

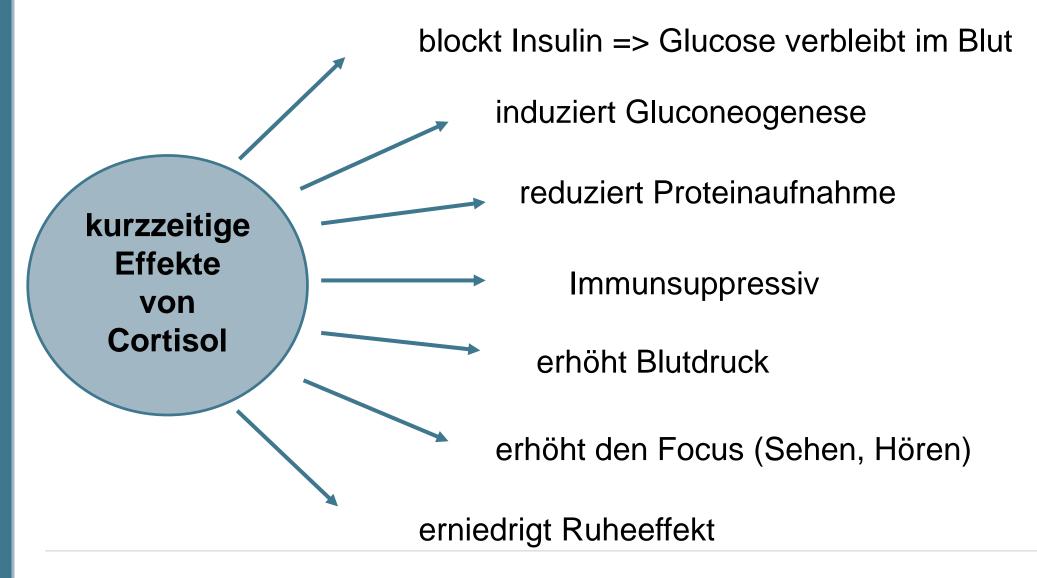

Befundinterpretation:

Sympathikus-Adrenomedulla-Achse (SAM)

Alpha-Amylase bei Erwachen deutlich erhöht. Bei einer entsprechenden klinischen Symptomatik Hinweis auf eine Fehlregulation der neuroendokrinen Stressachse auf Ebene der SAM-Achse. Unauffällige Aufwachantwort spricht dafür, dass die Regulationsfähigkeit erhalten ist. Weiterer Tagesverlauf im Normbereich.

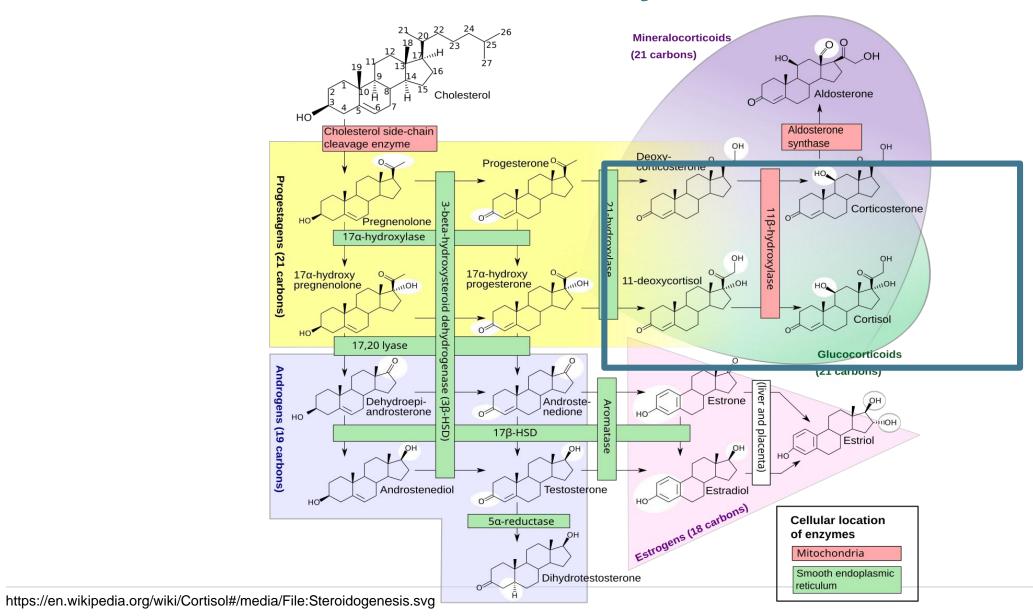
Physiologische Mechanismen der Stressreaktion

Marker SAM-Achsen-Aktivität Katecholamine Alpha-Amylase Metabolische Effekte:
Eiweiß-Abbau 1
Lipolyse 1
Gluconeogenese 1
Atmung 1

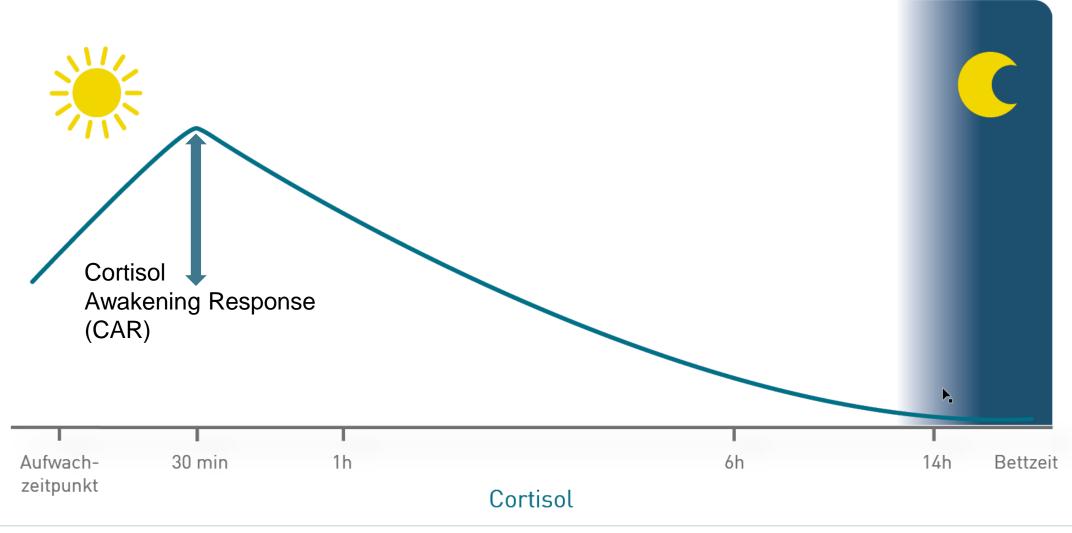

Kardiovaskuläre Effekte:
Blutdruck 1
Herzschlag 1
Immunsystem 11
Verdauung 1

Kognitive Effekte:
Aufmerksamkeit 1
Tunnelblick 1
Nierenaktivität 1
Libido 1

Marker HHN-Achsen-Aktivität Cortisol



Aufgaben und Effekte von Cortisol

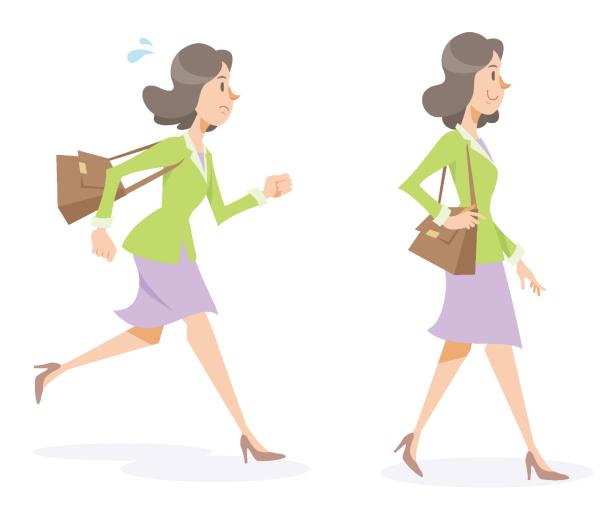


Cortisol – Synthese

Cortisol Gesamt-Tagesrhythmik Speichel

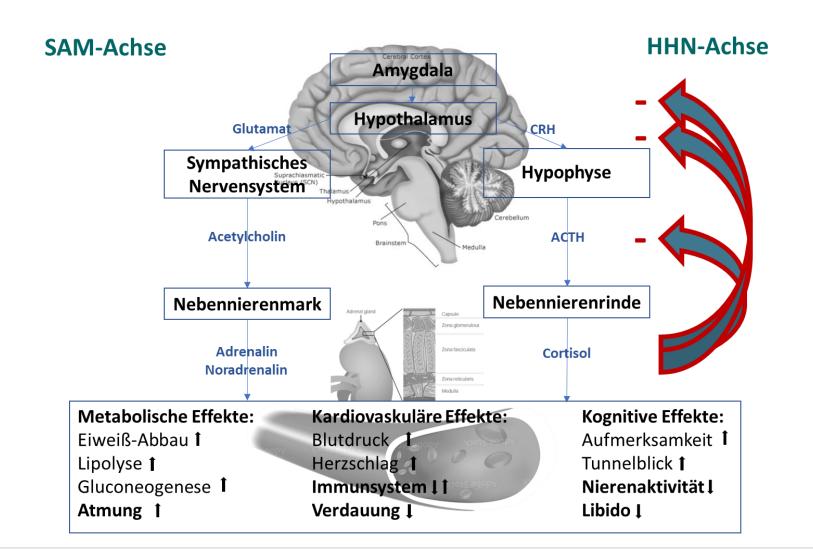
Befundbeispiel Cortisol Gesamt-Tagesrhythmik im Speichel

Cortisol Tagesgesamtprofil im Speichel (LC-MS/MS)				
Analysen	Ergebnis	Referenzbereich		
Cortisol 0 min	2,81 μg/l	0,5 - 8,47		
Cortisol 30 min	7,87 μg/l	1,04 - 12,83		
Cortisol 1 h	5,43 μg/l	0,65 - 8,45		
Cortisol 6 h	0,71 μg/l	0,22 - 2,72		
Cortisol 14 h	0,4 μg/l	0,07 - 0,94		
Awakening-Response	180 %	> 60		


Befundinterpretation:

Hypothalamus-Hypophysen-Achse (HHN)

Robuste Cortisol-Aufwachantwort sowie im weiteren Verlauf unauffällige Tagesrhythmik. Kein Hinweis auf eine Fehlregulation der neuroendokrinen Stressachse auf Ebene der HHN-Achse.



Wechselspiel zwischen Aktivierung und Beruhigung der HHN-Stressachse?

Negative Rückkopplung

Homöostase

Abschaltung der Stressreaktion

- Abbau der Stresshormone
- Aktivierung des Parasympathikus zur Regeneration und Erholung

Wiederherstellung der Homöostase

- Stabilisierung Kreislauf und Stoffwechsel
- Aufbau von Energiereserven

Langfristiger oder chronischer Stress kann die Gesundheit negativ beeinflussen

Symptome

Körperliche

häufige Kopfschmerzen

- Schlafstörungen
- erhöhte Infektanfälligkeit
- Magen-Darm-Beschwerden
- Herzrasen
- Schwindel
- hoher Blutdruck

Symptom Reizbarkeit

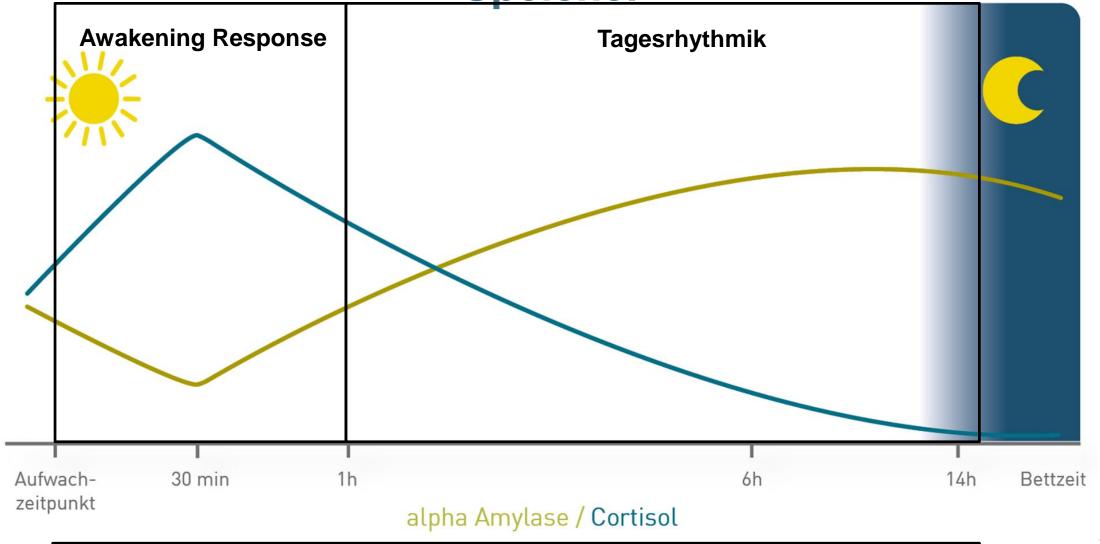
- Ungeduld
- Stimmungsschwankung
- Gefühl von Überforderung
- innere Leere /Unruhe
- Antriebslosigkeit
- depressive Verstimmung
- Angst

motionale

Kognitive

Konzentrationsprobleme

- Gedächtnisprobleme
- Grübeln
- Ständiges Gedankenkreisen


Rückzug von Freunden / Familie

- Zunahme von Alkohol-Nikotin- und Zuckergenuss
- Arbeitssucht
- Übermäßiger Medienkonsum

Verhaltensveränderung

Bestimmung von Alpha Amylase und Cortisol im Speichel

Gesamttagesrhythmik

Tagesprofile verraten aktuellen Stresszustand - Alpha Amylase

Erhöhte SAM-Achsen Aktivität - Regulationsfähigkeit erhalten

Alpha Amylase Tagesgesamtprofil im Speichel (Photometrie)

Analysen	Ergebnis	Referenzbereich
Alpha Amylase 0 min	313 U/ml	< 101,3
Alpha Amylase 30 min	104 U/ml	< 101,3
Alpha Amylase 1 h	88,9 U/ml	< 101,3
Alpha Amylase 6 h	324 U/ml	58,4 - 206,0
Alpha Amylase 14 h	296 U/ml	36,0 - 208,4
Awakening-Response	-66,8 %	< -30

Alpha Amylase Tagesgesamtprofil im Speichel (Photometrie)

Analysen	Ergebnis	Referenzbereich	
Alpha Amylase 0 min	117 U/ml	< 101,3	
Alpha Amylase 30 min	152 U/ml	< 101,3	
Alpha Amylase 1 h	283 U/ml	< 101,3	
Alpha Amylase 6 h	222 U/ml	58,4 - 206,0	
Alpha Amylase 14 h	260 U/ml	36,0 - 208,4	
Awakening-Response	29,9 %	< -30	

Erhöhte SAM-Achsen Aktivität

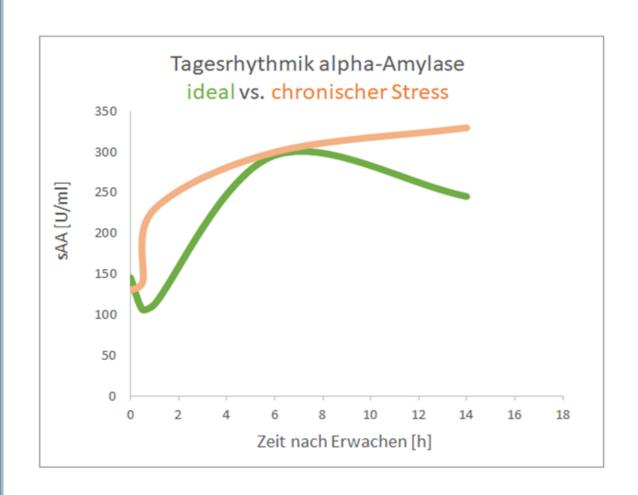
- Regulationsfähigkeit nicht erhalten

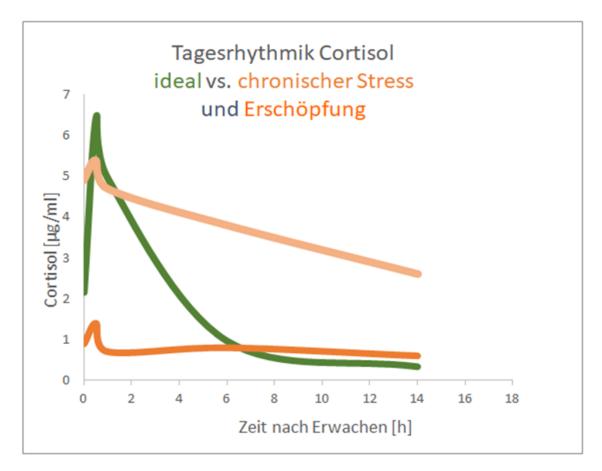
Tagesprofile verraten aktuellen Stresszustand - Cortisol

Cortisol Tagesgesamtprofil im Speichel (LC-MS/MS)

Erhöhte HHN-Achsen Aktivität

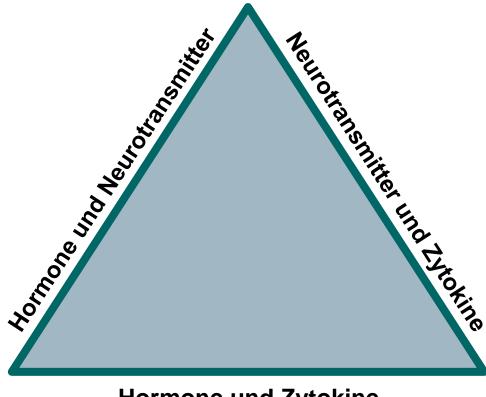
Analysen	Ergebnis	Referenzbereich	
Cortisol 0 min	13,3 µg/l	0,5 - 8,47	
Cortisol 30 min	20,7 μg/l	1,04 - 12,83	
Cortisol 1 h	14,3 µg/l	0,65 - 8,45	
Cortisol 6 h	4,2 µg/l	0,22 - 2,72	
Cortisol 14 h	1,4 µg/l	0,07 - 0,94	
Awakening-Response	56 %	> 60	


Cortisol Tagesgesamtprofil im Speichel (LC-MS/MS)


Analysen	Ergebnis	Referenzbereich	
Cortisol 0 min	0,1 μg/l	0,5 - 8,47	
Cortisol 30 min	0,12 μg/l	1,04 - 12,83	
Cortisol 1 h	0,12 μg/l	0,65 - 8,45	
Cortisol 6 h	0,82 μg/l	0,22 - 2,72	
Cortisol 14 h	0,27 μg/l	0,07 - 0,94	
Awakening-Response	20 %	> 60	

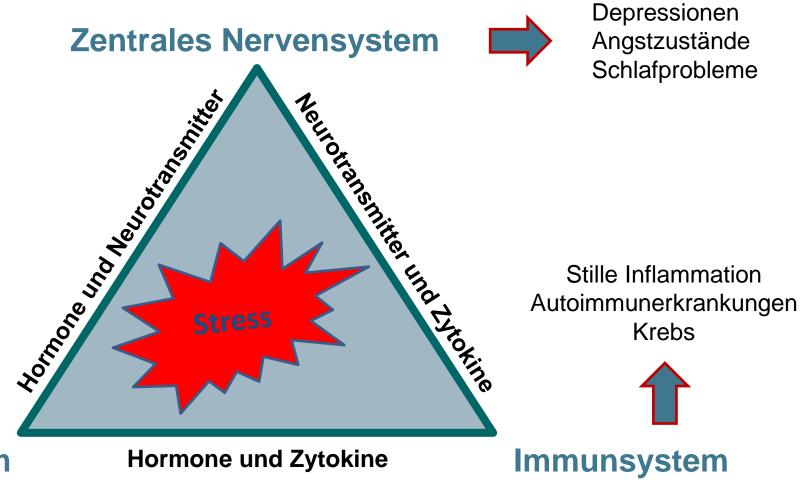
Erschöpfung HHN-Achsen Aktivität

Zusammenfassung



FRAGEN?

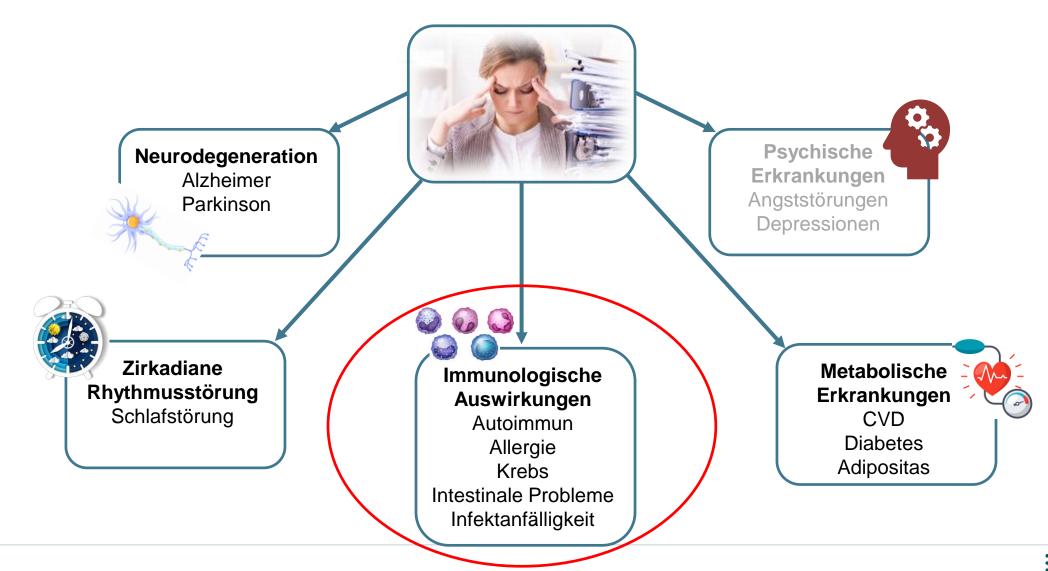
Wechselwirkungen


Endokrines System

Hormone und Zytokine

Immunsystem

Wechselwirkungen

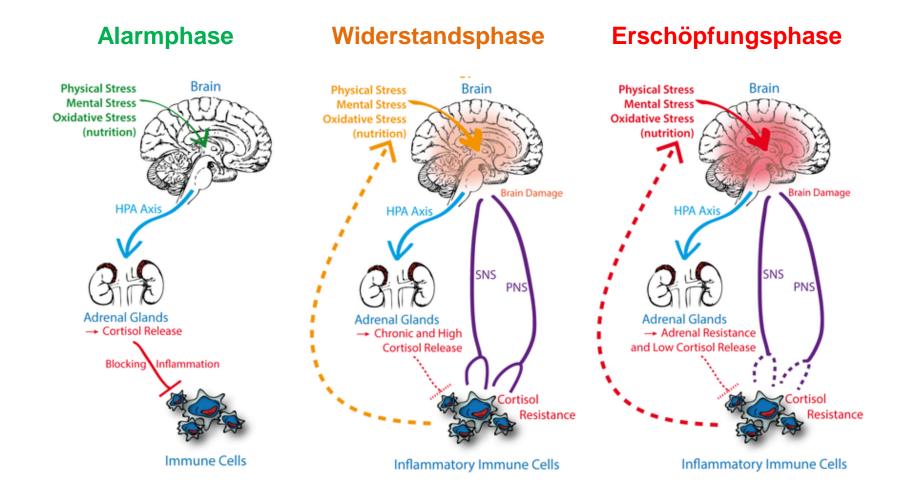

HH-Nebenniere-Achse HH-Schilddrüse-Achse HH-Gonaden-Achse

Endokrines System

Auswirkungen von chronischem Stress

Stress und seine Auswirkungen auf das Immunsystem

Akuter Stress


- Schutz vor Verletzungen
- Erhöhte Wundheilung

Chronischer Stress schwächt das Immunsystem

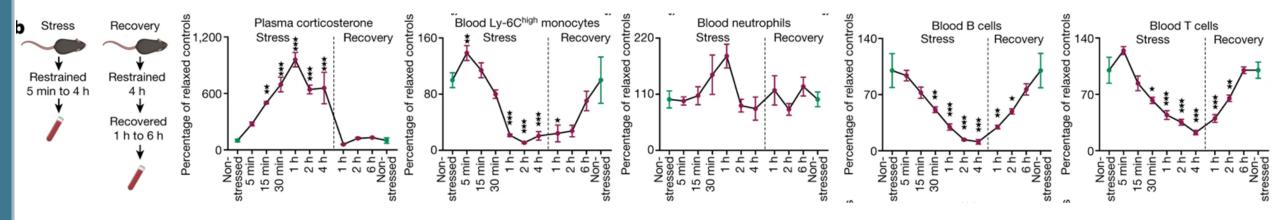
- Infektionskrankheiten: Anfälligkeit für Erkältungen
- Autoimmunerkrankungen
- Erhöhtes Krebsrisiko und –Sterblichkeit
- Dysbalance Mikrobiom und Darmbarrierestörung
- Neuroinflammation

Die 3 Stressphasen

Alarmphase – Akuter Stress Dauer: Stunden bis Tage

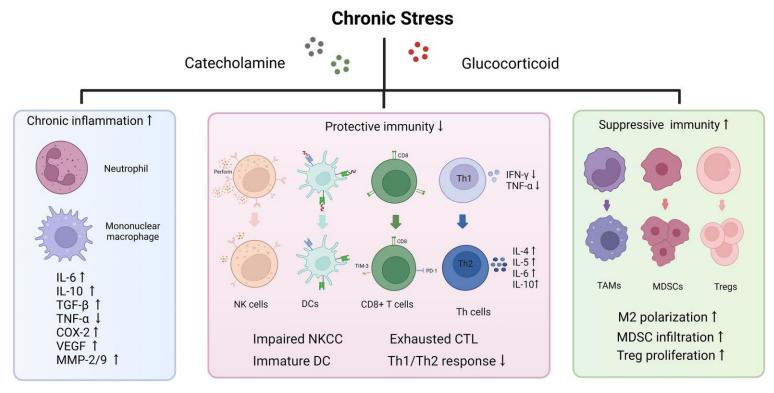
Immunprotektion: Leukozyten-Umverteilung und spez. Aktivierung

Angeborenes Immunsystem erhöht zur Wundheilung und Infektionsresistenz


Aktivität Natürliche Killerzellen, Neutrophile und Makrophagen erhöht

Pro-inflammatorische Zytokine IL-6 und TNFalpha

Thrombozytenaktivierung


Adaptives Immunsystem unterdrückt

T und B-Zellen werden ins Knochenmark rekrutiert, Aktivität und Proliferation supprimiert

Widerstandsphase - Chronischer Stress Dauer: Monate bis Jahre

Monozyten und Makrophagen: Hyperreaktiv, unterschwellige Sekretion pro-inflammatorischer Zytokine

Natürliche Killerzellen: Aktivität und Anzahl vermindert

T-Zellen: Verminderung Aktivität und Proliferation, Th1 zu Th2-Shift, erhöhte Anzahl regulatorische T-Zellen

B-Zellen: Reduzierte Proliferation und Antikörperproduktion

Dendritische Zellen: Eingeschränkte Reifung und abgeschwächte Antigenpräsentation

Neutrophile: Funktion und Verteilung eingeschränkt

Immunologische Dysbalance

Erhöhtes Infektionsrisiko
Eingeschränkte Impfantwort
Silent Inflammation
Fördert Autoimmunerkrankungen
Fördert Allergien
Erhöhte Krebsentstehung und Fortschreiten

Dauerhafte Veränderung der Immunfunktion durch chronischen Stress

Labor Berlin		Ärztlicher Befundbericht		
Untersuchung	Ergebnis	Einheit	Referenzbereich	
T-Helferzellstatus - Zytokinprofil (24 Stunden Stimulation mit Con <i>P</i>		kin-Konze	entrationen nach	
IFN-g (TH1)	235	pg/ml	374 – 1660	
IL-4 (TH2)	633	pg/ml	28 – 141	
TH1/TH2 Ratio	0,4		6,1 – 21	
IL-2 (TH)	397	pg/ml	384 – 960	
IL-17	74,0	pg/ml	49 – 446	
IL-10 (Treg)	2805	pg/ml	760 – 1900	
nterpretation				
Die stimulierte Zytokin- Freisetzu TH2-Zell-Anteil (erhöhtes IL-4). Die TH1- Antwort (IFN-g) ist verm Die verminderte TH1/TH2-Ratio s Die erhöhte IL-10 Freisetzung w Treg-Zellen hin.	nindert. spricht für einen TH2-Shift.		•	

Chronischer Stress ist relevanter Verstärker und potentieller Auslöser von Autoimmunkrankheiten

ca. 80% der Patienten mit Autoimmunerkrankungen berichten von ungewöhnlichem emotionalem Stress vor Krankheitsausbruch bzw. Verstärkung der Autoimmunerkrankung durch Stress

Chronischer Stress ist relevanter Verstärker und potentieller Auslöser von Autoimmunkrankheiten

Retrospektive Kohortenstudie (Schweden 1981-2013) Stressbedingte Immundysfunktion hat Einfluss auf Ausprägung von Autoimmunerkrankungen

Teilnehmer:

106.464 Patienten mit stressbedingten Störungen

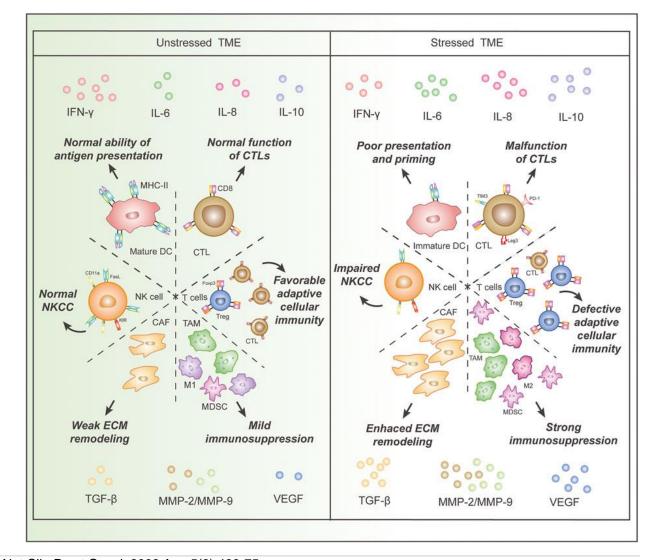
1.064.640 nicht exponierte Kontrollpersonen

126.625 Vollgeschwistern (= Kontrollgruppe für genetischer Faktoren)

In der Studie war die Exposition gegenüber einer klinischen Diagnose stressbedingter Störungen signifikant mit einem erhöhten Risiko für eine Autoimmunerkrankung verbunden.

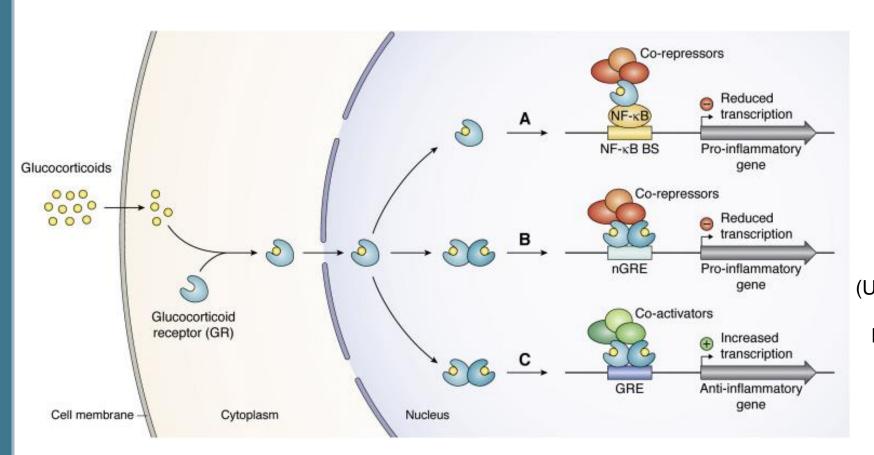
- ➤ Inzidenzrate 9.1/1000/Jahr in exponierter Gruppe
- 6.0 bzw. 6.5/1000/Jahr in Kontrollgruppen

Autoimmunkrankheiten verursachen Stress


Erkrankung	Typische Symptome	Stressauslöser	
Rheumatische Arthritis	Schmerzen Morgensteifigkeit Gelenkschwellungen	chronische Schmerzen führen zu körperlichem und psychische Finanzielle Ängste bei drohender Arbeitsunfähigkeit	m Stress
Multiple Sklerose (MS)	Müdigkeit (Fatigue) Sehstörungen Muskelschwäche / Lähmung	Angst vor Krankheitsfortschritt Einschränkungen im Alltag=> Frust Kontrollverlust	
Psoriasis	Juckreiz Sichtbare Hautveränderung Gelenkschmerzen	Scham / Selbstwertprobleme Schlafmangel durch Juckreiz Sozialer Rückzug	
Morbus Crohn und Colitis ulcerosa	Bauchkrämpfe Durchfall Inkontinenz	Angst vor Schüben Soziale Ängste Schlafstörungen	
Hashimoto-Thyreoiditis	Erschöpfung Gewichtsschwankungen Depressive Verstimmungen	Psychisches Leiden wird verstärkt Hormonelle Dysregulation begünstigt Stimmungsschwankungen	
Diabetes Typ 1	Blutzuckerschwankungen Insulinabhängigkeit	Ständige Selbstüberwachung Angst vor Komplikationen Soziale Einschränkungen durch strikte Essensplanung	
Systemischer Lupus erythematodes	Müdigkeit Gelenkschmerzen Hautausschlag	Ängste durch unberechenbare Schübe Psychosozialer Stress durch Schmetterlingsexanthem Fatigue, Konzentrationsstörungen	
	Organschädigungen		₩IMD

Autoimmunkrankheiten verursachen Stress

Erkrankung	Typische Symptome	Stressauslöser
Rheumatische Arthritis	Schmerzen Morgensteifigkeit Gelenkschwellungen	chronische Schmerzen führen zu körperlichem und psychischem Stress Finanzielle Ängste bei drohender Arbeitsunfähigkeit
Multiple Sklerose (MS)	Müdigkeit (Fatigue) Sehstörungen Muskelschwäche / Lähmung	Angst vor Krankheitsfortschritt Einschränkungen im Alltag=> Frust Kontrollverlust
Psoriasis	Juckreiz Sichtbare Hautveränderung Gelenkschmerzen	Scham / Selbstwertprobleme Schlafmangel durch Juckreiz Sozialer Rückzug
Morbus Crohn und Colitis ulcerosa	Bauchkrämpfe Durchfall Inkontinenz	Angst vor Schüben Soziale Ängste Schlafstörungen
Hashimoto-Thyreoiditis	Erschöpfung Gewichtsschwankungen Depressive Verstimmungen	Psychisches Leiden wird verstärkt Hormonelle Dysregulation begünstigt Stimmungsschwankungen
Diabetes Typ 1	Blutzuckerschwankungen Insulinabhängigkeit	Ständige Selbstüberwachung Angst vor Komplikationen Soziale Einschränkungen durch strikte Essensplanung
Systemischer Lupus erythematodes	Müdigkeit Gelenkschmerzen Hautausschlag Organschädigungen	Ängste durch unberechenbare Schübe Psychosozialer Stress durch Schmetterlingsexanthem Fatigue, Konzentrationsstörungen


Stress und Krebs

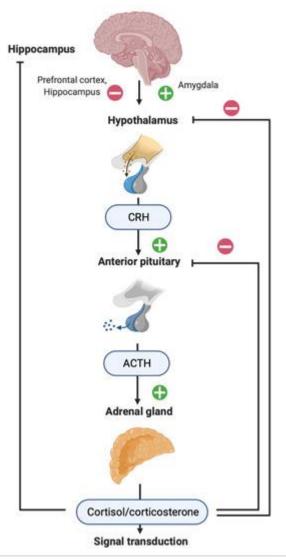
- Meta-Analyse (548 Studien)
- n=165: Effekt auf Krebsinzidenz
- n=330: Effekt auf Krebsprognose
- n=53: Effekt auf Krebssterblichkeit
- Prospektive Studie Japan,
 101.708 Teilnehmer
- Teilnehmer mit konstant hohem
 Stressempfinden 11% höheres Krebsrisiko
- Mechanismen: Immunsuppression, chronische, Inflammation, Mutationen, erhöhte Angiogenese, ECM-Modelierung

Chronischer Stress mit Cortisol-Resistenz (Erschöpfungsphase) - Dauer: Jahre

Chronisch erhöhte Cortisol-Spiegel
können zu einer Cortisol-Resistenz führen

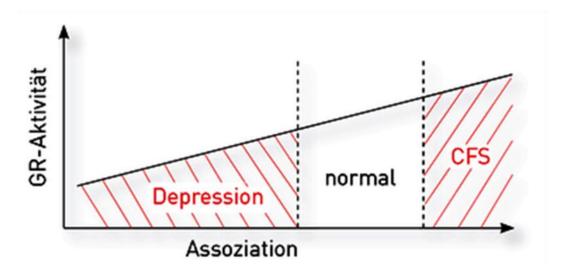
Runterregulierung oder Resistenz der
Glukokortikoid- Rezeptoren

Rückkopplung gestört


Cortisol wird verstärkt ausgeschüttet

(Unterbindung anti-inflammatorischer Wirkung
Erhöhte Neurodegeneration
Metabolische und kardiovaskuläre Effekte)

Nebennierenerschöpfung



GR-Aktivität als prognostischer Marker

Sensitivität beeinflusst durch:

- Genetische Polymorphismen
- Umwelteinflüsse
- Aktuelle Krankheitsverläufe

Messung der GR-Aktivität im Labor

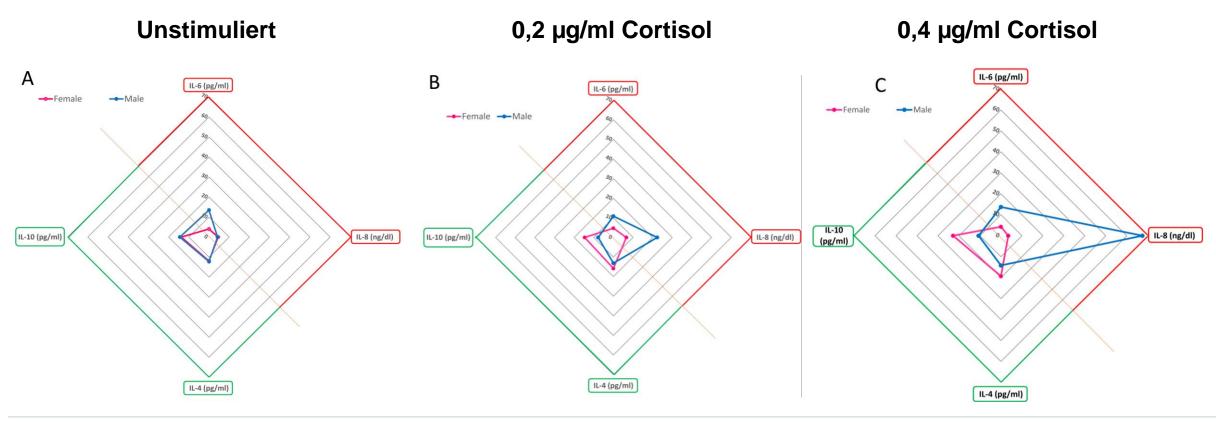
Ärztlicher Befundbericht

Untersuchung Ergebnis Einheit Referenzbereich

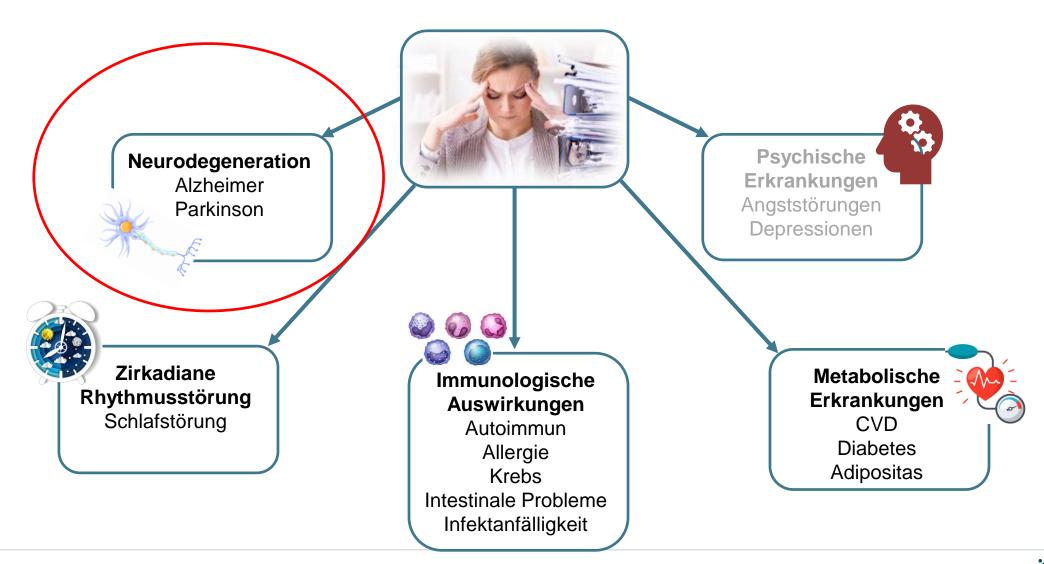
GR- Aktivität 2,7 1,4-2,4

Der Test misst die Aktivität des Glucokortikoid-Rezeptors anhand der Dexamethason vermittelten Hemmung der Zellproliferation.

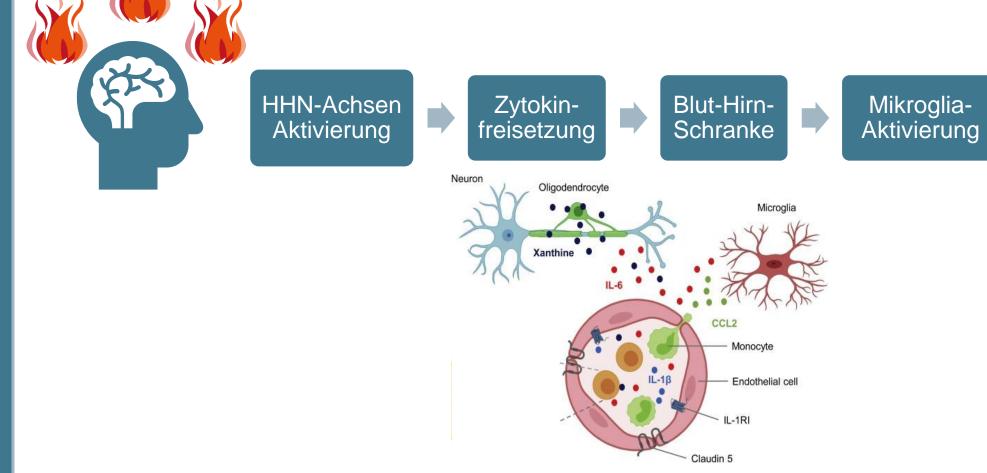
Die GR-Aktivität ist erhöht.


Dies weist daruaf hin, dass die Sensitivität der neuroendokrinen Stressachse für Glykokortikoide (z.B. Cortisol) gesteigert ist. In Studien wurde eine gesteigerte GR-Aktivität gehäft bei chronischem Fatigue-Syndrom (CFS) beobachtet.

Vor dem Hintergrund einer Fatigue- Symptomatik aus dem depressiven Formenkreis spricht daher die erhöhte GR-Aktivität differentialdiagnostisch eher für das Vorliegen eines CFS als für Depression oder Burnout.


Geschlechtsspezifische akute Stress-Reaktion

- Ex vivo Stimulation (16h) von peripheren mononukleären Zellen aus dem Blut mit Cortisol
- Rosa: Frauen, Blau: Männer



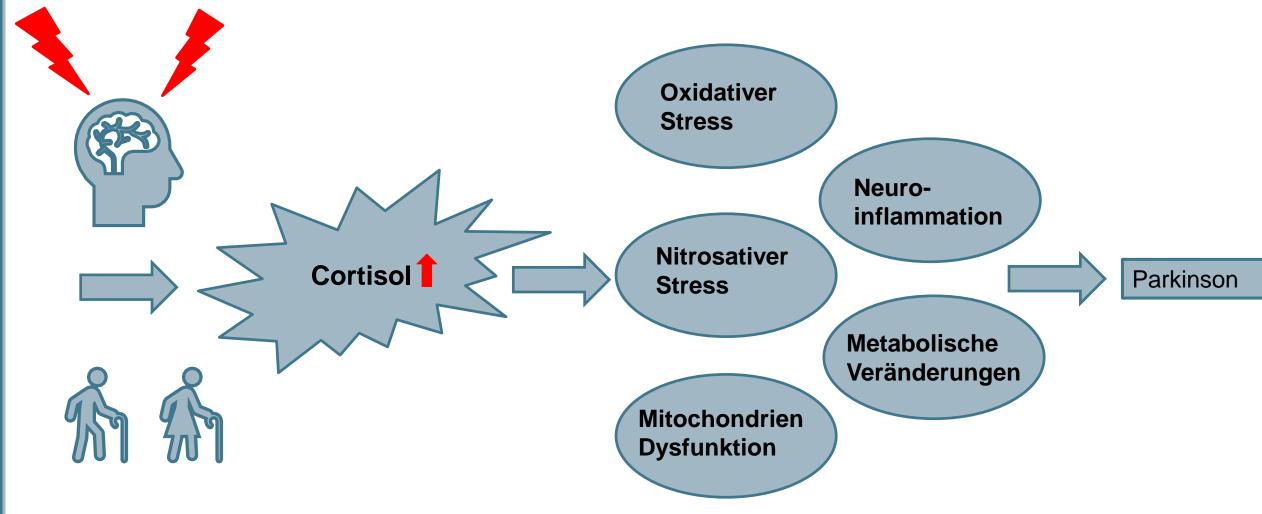
Auswirkungen von chronischem Stress

Neuroinflammation - Entzündliche Prozesse im Nervensystem

Neuronale

Auswirkungen

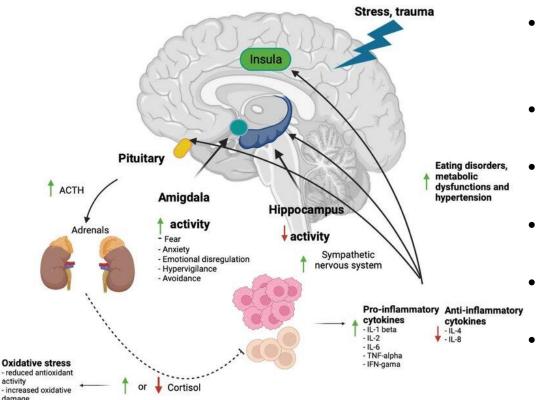
Neuroinflammation - Entzündliche Prozesse im Nervensystem


Stress Erschöpfung **Emotionale Dysbalance** dACC Angst Anhedonie Glutamate Striatum ↑ Kynurenine Psychomotorische **Blut-Hirn-Schranke** Dopamine Verlangsamung Serotonin Hypervigilanz ↑ ACTH Amygdala Adrenal glands **Pituitary** ↑ IL-1, IL-6 ↑ TNF ↑ SNS Makrophagen ↑ IFN_V ↑ CRP

T-Zellen

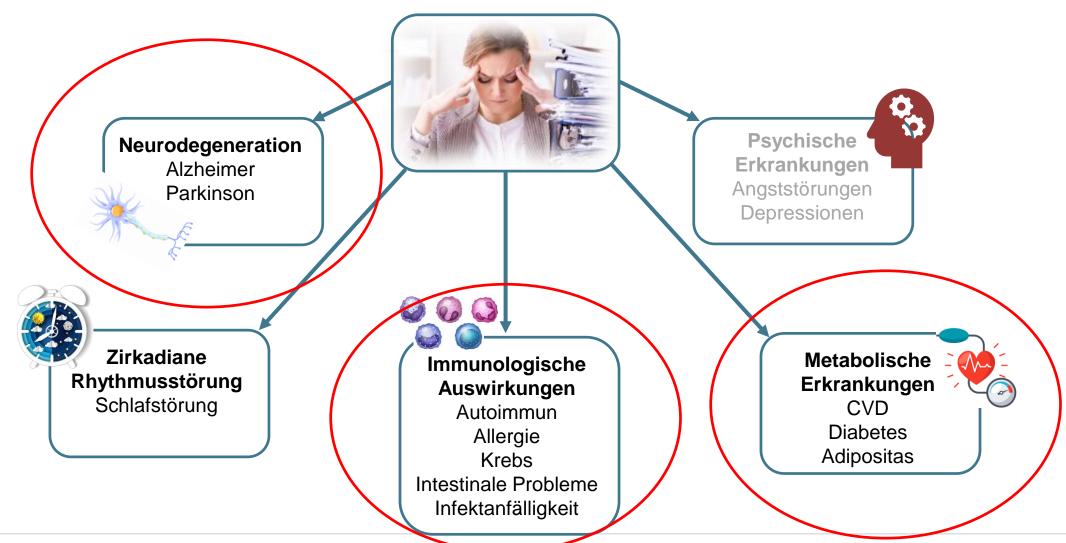
↑ Cortisol↑ Glucocorticoid resistance

Neuroinflammation als Risikofaktor für Parkinson

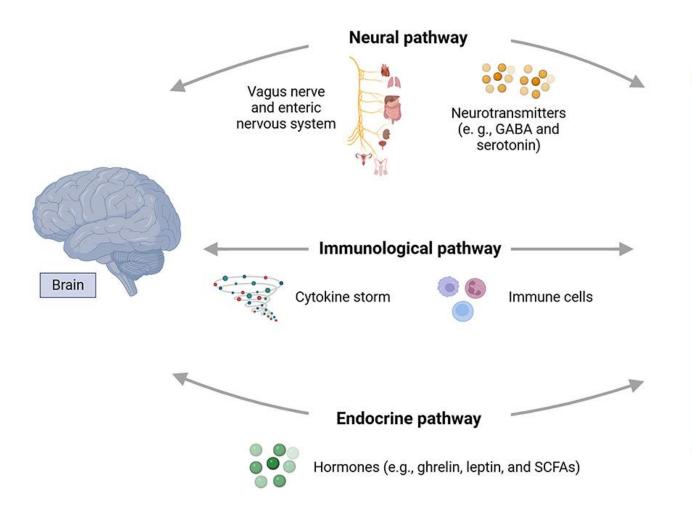


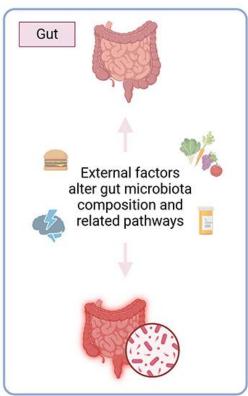
Auswirkungen von Stress – Profil Multisystemerkrankungen

Labor Berlin	Ärztlic	her Befundl	bericht	
Untersuchung	Ergebnis	Einheit	Referenzbereich	
Profil Multisystemerkrankung				
Histamin (gesamt) i. HepBl. (EIA) Nachweis einer deutlichen Mastzell-assoziierten sys	77,6 temischen Er	ng/ml ntzündung.	< 65,5	
MDA-LDL i.S. (EIA) 81,5 U/I < 80 Erhöhtes MDA-modifiziertes LDL als Hinweis auf Lipidperoxidation als Folge eines signifikanten oxidativen Stress.				
Nitrotyrosin i. EDTA-Plasma (ELISA) Das erhöhtes Nitotryosin weist auf eine gesteigerte und Peroxynitrit hin (= nitrosativer Stress).	1179 Bildung von	nmol/l Stickstoffmonox	< 630 id (NO)	
ATP intrazellulär (CLIA) Der Messwert bezieht sich standardisiert auf 2x10/als Hinweis auf eine gestörte Mitochondrienfunktio			> 2,5 azellulares ATP	
TNF-alpha i.S.(CLIA) Hinweis auf systemische Entzündungsreaktion.	13,6	pg/ml	< 8,1	
IP-10 i.S. (PIA) Hinweis auf systemische Entzündung (TNF-a) mit Be	331 teiligung der	pg/ml TH1-Effektorzelle	< 300 en (erhöhtes IP-10).	


Posttraumatische Belastungsstörung - neurologische Verbindung zwischen Trauma und Neuroinflammation

- Dysregulation der HHN Achse => Unzureichende Cortisol-Antwort
- Höhere periphere Entzündungsmarker (z.B. CRP)
- Chronisch aktivierte Mikroglia => IL-6, TNF, IL1ß ↑
- Amygdala Überaktivität => Angst, Überreaktionen
- Hippocampus Volumenminderung => Gedächtnisprobleme
- Präfrontaler Kortex Hypoaktivität => Reduzierte Emotionskontrolle




Auswirkungen von chronischem Stress

Darm-Gehirn-Achse

Stressinduzierte Darmbarrieren-Dysfunktion und Dysbiose

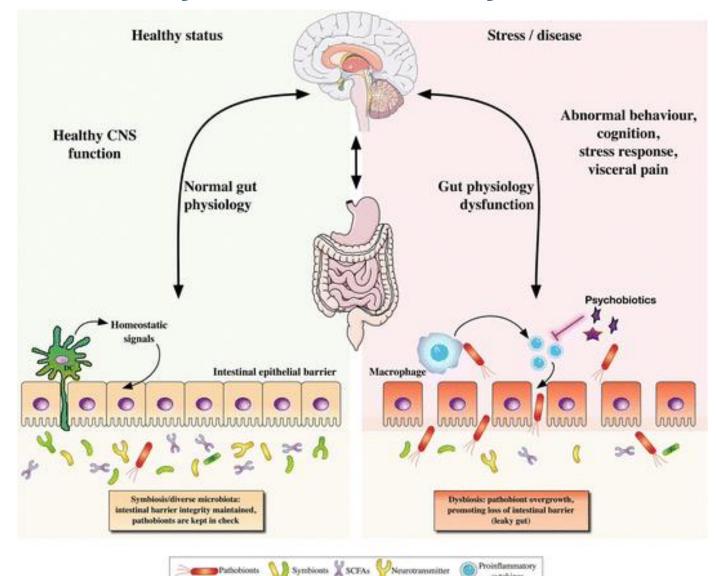
3 Elemente

Mikrobiom Darmepithelzellen mit Tight Junctions Darm-assoziierte Immunsystem

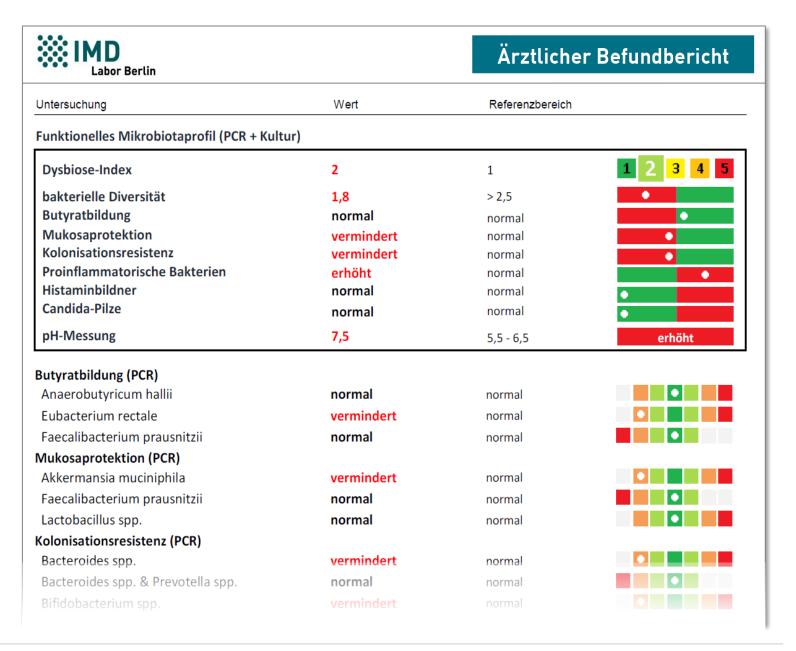
Intestinale Permeabilität

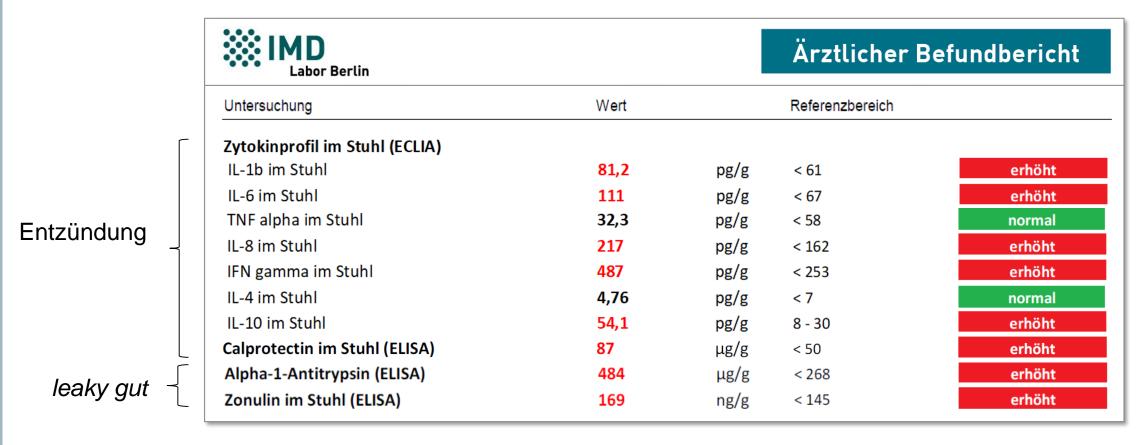
= selektiver Eintritt von Luminalstoffen in den Organismen

Stress


Verminderte Durchblutung der Schleimhaut Verminderte Darmmotilität Schädigung der Tight Junctions Infiltration Immunzellen

Dysbiose Leaky gut Systemische Entzündung


Störung der Darm-Hirn-Achse


Funktionelles Mikrobiotaprofil

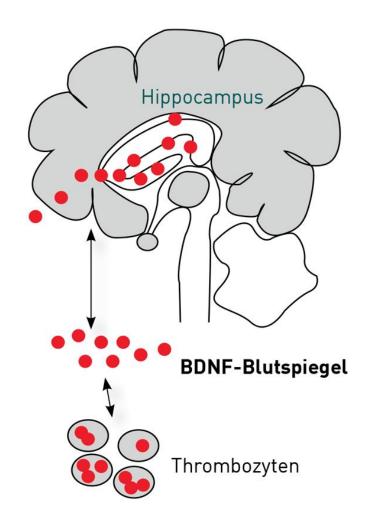
➤ Dysbiose mit proentzündlichen Bakterien und verminderten Schleimhaut-schützenden Bakterien

Entzündungsparameter und Darmbarrierestörungen

- > Entzündung der Darmschleimhaut
- > erhöhte Permeabilität der Darmschleimhaut

BDNF ist ein sensitiver Biomarker für stressbedingte Veränderungen im Gehirn

BDNF (Brain-Derived Neurotrophic Factor) ist ein Protein

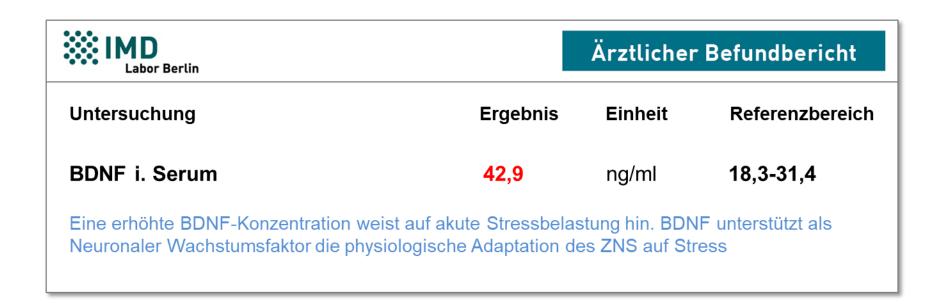

Bildung: Hippocampus und Thrombozyten

Aufgabe: Überleben

Wachstum

Differenzierung von Neuronen

Essenziell für Lernen, Gedächtnisbildung und neuronale Plastizität



BDNF als Biomarker für Stress und Resilienzfaktor

Akuter Stress:

- BDNF-Anstieg Teil der physiologischen Stressantwort
- Schutz des Nervensystems

BDNF als Biomarker für Stress und Resilienzfaktor

Chronischer Stress:

BDNF sinkt

Mitursache psychischer und struktureller Veränderungen starker Rückgang vor allem bei Depressionen, Burnout, Schlafstörungen

⇒ Rückgang auch im Alter

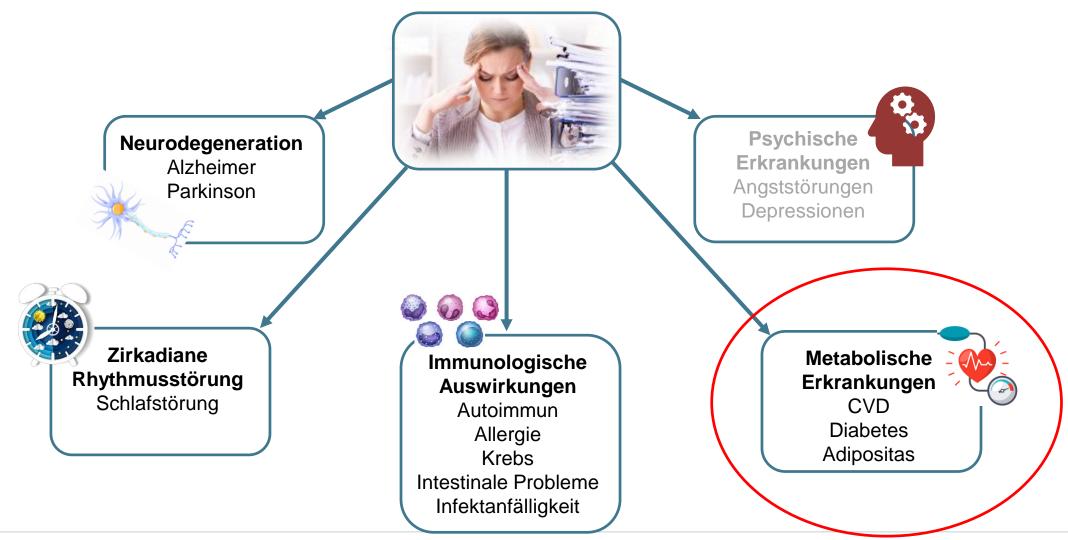
Körperliche Aktivität steigert BDNF-Level

Meditation, ausreichend Schlaf und soziale Unterstützung wirken protektiv

Butyrat im Darmmikrobiom zu den Ursachen eines BDNF-Magels.

Labor Berlin		Ärztlicher Befundbericht	
Untersuchung	Ergebnis	Einheit	Referenzbereich
BDNF i. Serum	11,2	ng/ml	18,3-31,4

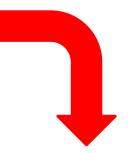
Kurzkettige Fettsäuren werden von Darmmikrobiota produziert


Darm-Hirn-Achse & BDNF:

- Hauptquelle für kurzkettige Fettsäuren: Fermentation von z.B. Ballaststoffen durch Mikrobiom im Dickdarm
- Mikrobiom beeinflusst damit indirekt Stress-Resilienz & depressive Symptome

Kurzkettige Fettsäuren im Stuhl (GC-MS/MS)		
Acetat	14,5	μmol/g > 41,4	vermindert
Butyrat	1,43	μmol/g > 7,0	vermindert
Propionat	3,03	μmol/g > 10,2	vermindert

Auswirkungen von chronischem Stress

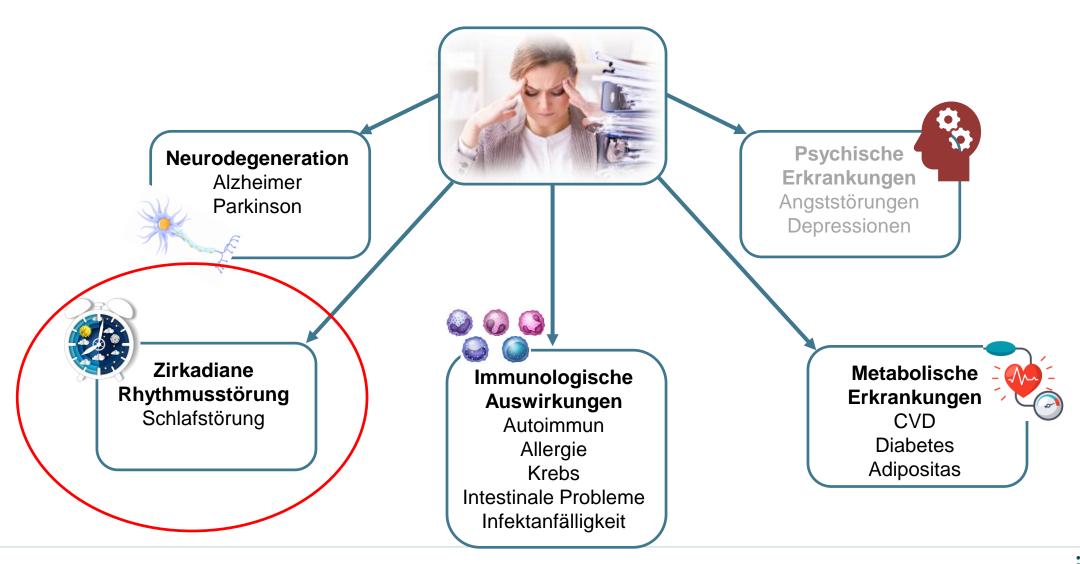


Stress als Risikofaktor für Gewichtzunahme und metabolische Erkrankungen

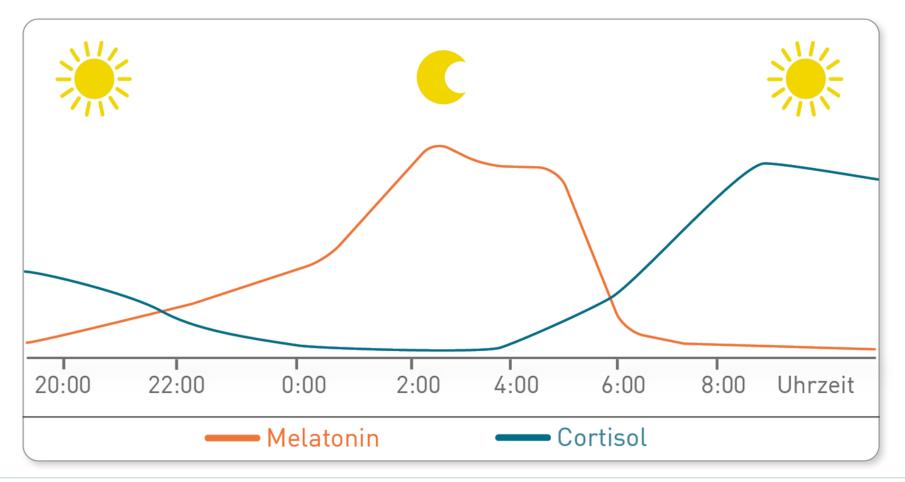
Gewichtzunahme

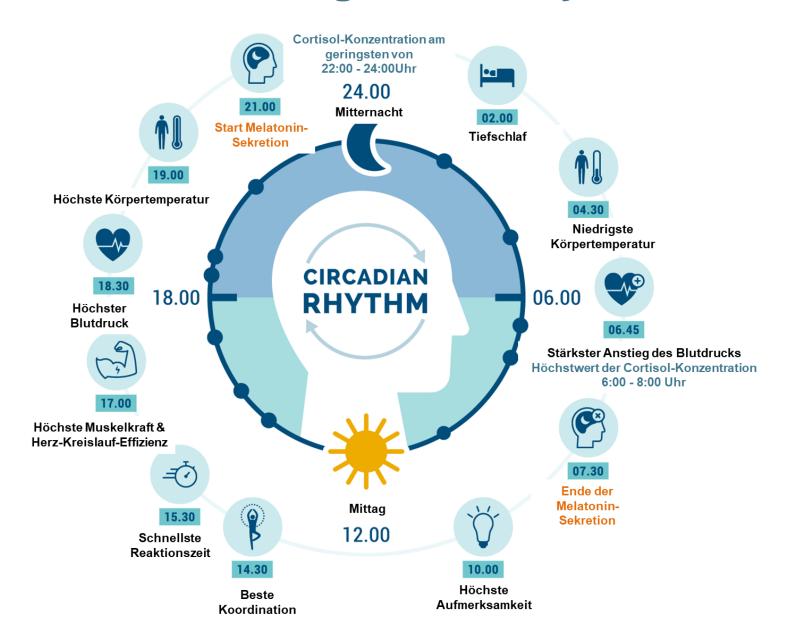
Leber: Glucosefreisetzung Cortisol Fettgewebe: Freie Fettsäuren Muskelgewebe: Aminosäuren Erhöhter Insulinausschüttung **Sympathikoturnus** Ghrelin Störung des Leptin **Appetits** Nahrungsaufnahme Körperliche Aktivität Energieumsatz Müdigkeit

depressive Verstimmungen

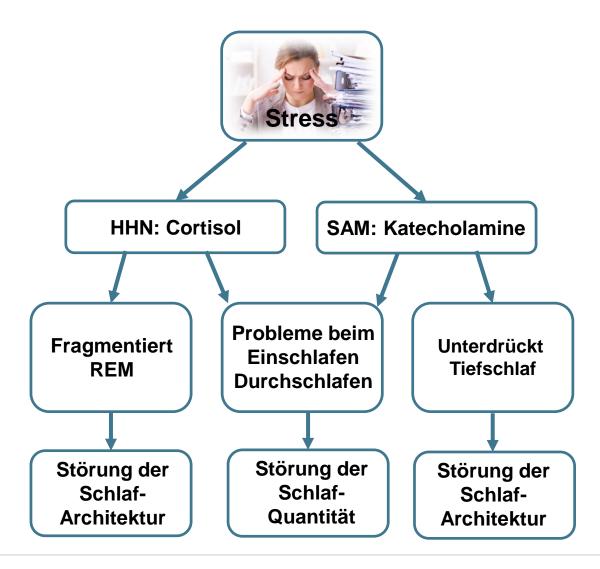


Adipositas
Insulinresistenz
Typ 2 Diabetes
Hypertonie
Dyslipidämie


Auswirkungen von chronischem Stress


Schlafstörungen

Cortisol – Tageshormon Gegenspieler: Melatonin – Nacht- bzw. Schlafhormon



Zirkadianer Tag-Nacht-Rhythmus

Stress beeinflusst Schlaf und Schlafqualität

Einschlafprobleme: Schlafprofil Bettzeit

Schlafprofil Bettzeit im Speichel		
Analysen	Ergebnis	Referenzbereich
Melatonin Bettzeit (ELISA)	7,2 pg/ml	> 8
Cortisol (LC-MS/MS)	0,18 μg/l	< 1
Alpha Amylase (Photo)	257 U/ml	36 - 208

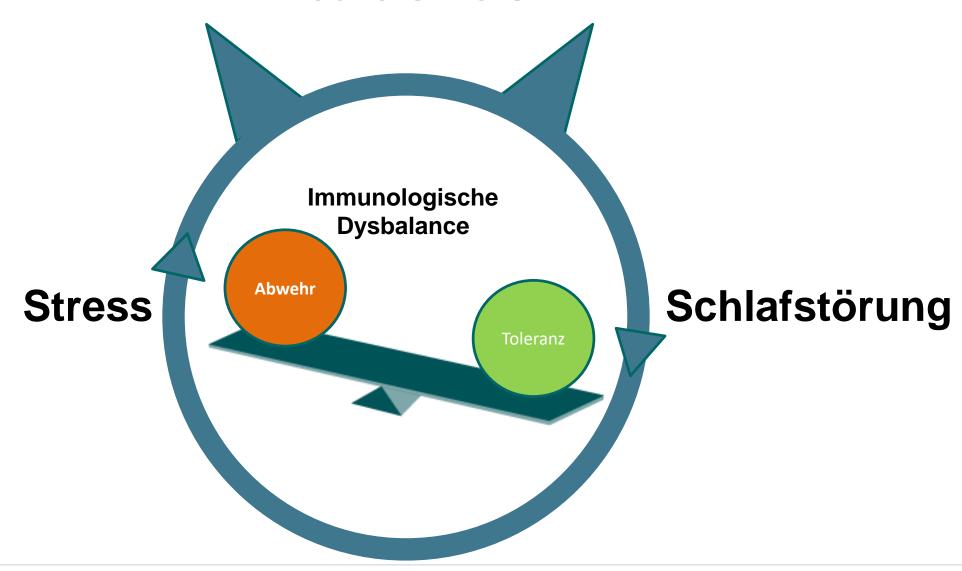
Befundinterpretation:

Schlafregulation

Zur Bettzeit vermindertes Melatonin und eine erhöhte alpha-Amylase-Aktivität als Hinweis auf eine vermehrte Aktivierung der SAM-Achse. Dies könnte Einschlafschwierigkeiten bedingen.

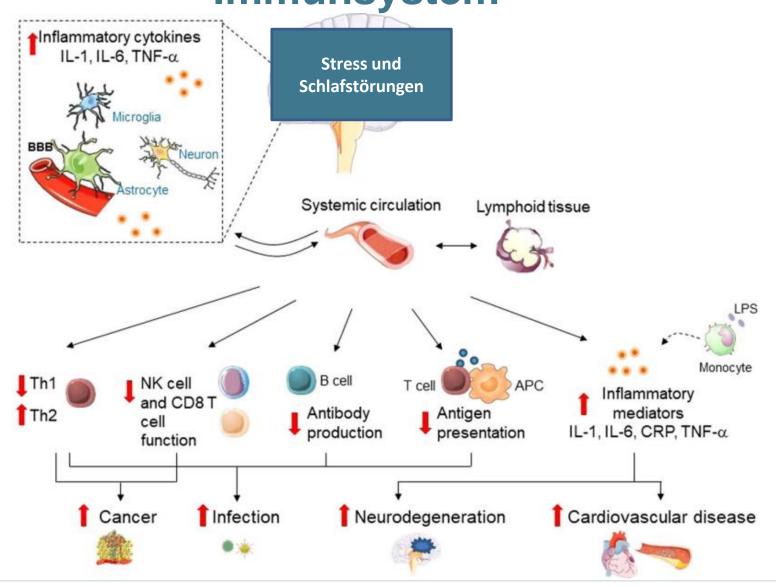
Durchschlafprobleme: Schlafprofil 2 Uhr nachts

Schlafprofil 2 Uhr nachts im Speichel		
Analysen	Ergebnis	Referenzbereich
Melatonin (ELISA)	11,3 pg/ml	> 16
Cortisol (LC-MS/MS)	1,35 μg/l	<1
Alpha Amylase (Photo)	176,0 U/ml	2,4 - 145,2

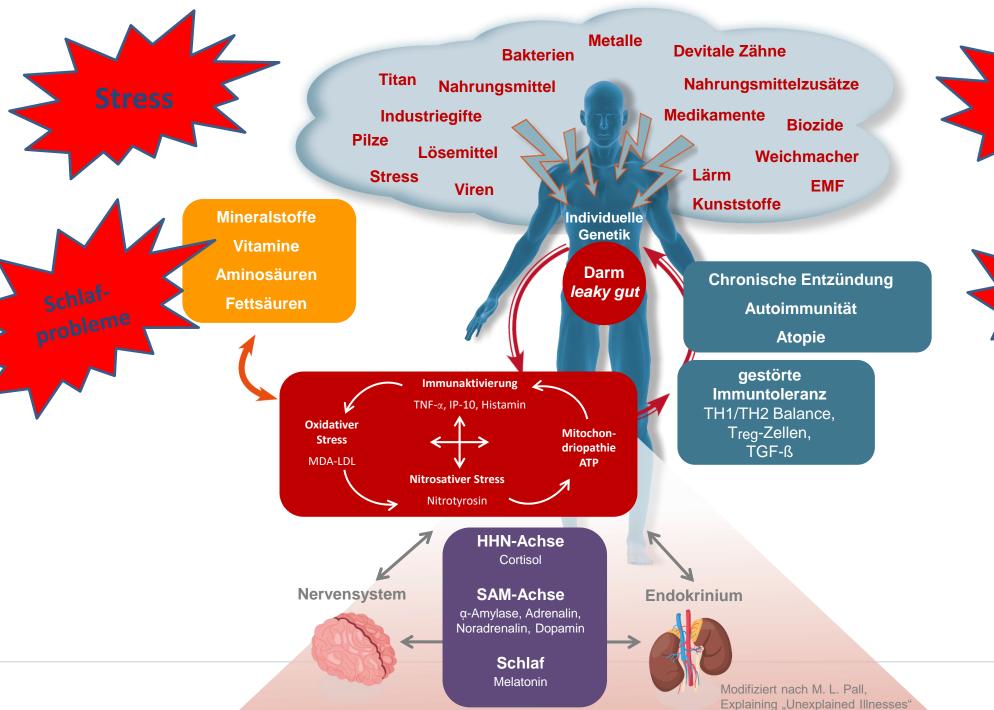

Befundinterpretation:

Schlafregulation

Um 2 Uhr nachts vermindertes Melatonin sowie Hinweis auf vermehrte Aktivierung der HHN-Achse(Cortisol erhöht) und SAM-Achse (erhöhte alpha-Amylase-Aktivität). Diese Abweichungen könnten mit Durchschlafschwierigkeiten in Zusammenhang stehen.



Teufelskreis



Auswirkungen von Stress und Schlafstörungen auf das Immunsystem

FRAGEN?

Therapie - Bewusstsein schaffen

- Wie war mein allgemeines Stresslevel heute?
- Was hat heute Stress ausgelöst?
- Wie habe ich auf diesen Stress reagiert?
- Was hat mir heute gut getan oder geholfen?
- Was kann ich morgen anders oder besser machen?
- Tägliche / wöchentliche Reflexion

Behandlung und Stressbewältigung- Ursachen suchen und beheben

Stressmanagement Prävention

Zeitmanagement, Prioritäten

Bewegung => regelmäßiger Sport reduziert Cortisol und verbessert Schlaf

Yoga

Entspannungstechniken

(Progressive Muskelentspannung, Autogenes Training, Meditation, Atmen, Vagustraining)

Soziale Unterstützung

Behandlung und Stressbewältigung - Ursachen suchen und beheben

- Lebensstiloptimierung
- Schlaf
- Ernährung
- Reduktion Kaffee, Alkohol, Nikotin
- strukturierter Tagesablauf

- Vitamin C, A, D
- B-Vitamine
- CoQ10
- Aminosäuren
- Mineralstoffe (Magnesium, Kalium, Jod, Kupfer, Eisen, Kalzium, Zink)
- Omega 3 Fettsäuren

Behandlung und Stressbewältigung - Ursachen suchen und beheben

Ärztliche Abklärung und Behandlung körperlicher Ursachen

Schilddrüse

Fettstoffwechselstörungen ursächlich behandeln

Herzkreislauf

Psychotherapie

Kognitive Verhaltenstherapie: Veränderung stressverschärfender Denk- und Verhaltensmuster Schematherapie, Tiefenpsychologie Stressbewältigungstrainings

Medizinische Behandlung

ggf. Medikamentös z.B. Antidepressiva

Wann welcher Test?

Symptome	Test
Leistungsabfall	Cortisol- Awakening- Response (CAR)
Nervosität	VNS-Stressprofil, α-Amylase-Awakening-Response (AAR); COMT; MAO-A
Konzentrationsschwäche Gedächtnisstörungen	Vitamin B12, <i>Leaky gut</i> - Diagnostik , Cortisol- Awakening- Response (CAR), Profil Multisystemerkrankungen
Häufige Infekte	Cortisol- Awakening- Response (CAR), Zink, Selen, Vitamin D, Aminosäuren, Melatonin, T-Helferzell Status-Immunprofil
Silent inflammation	Profil Multisystemerkrankungen, Cortisol Gesamt-Tagesrhythmik
Schlafstörungen	Melatonin und Schlafprofile (Bettzeit + 2 Uhr)
Motivationsverlust bis zum Burn-out	Cortisol- Awakening- Response (CAR), α-Amylase-Awakening- Response (AAR), VNS-Stressprofil; BDNF
Fatigue	Cortisol und alpha- Amylase Gesamt-Tagesrhythmik, Profil Multisystemerkrankungen, Mikrobiom- + <i>Leaky gut</i> – Diagnostik; GR-Aktivität

Vielen Dank!

Umweltfaktoren & Gesundes Altern

Unsere Referenten sind u.a.

Dr. Joé Diederich

Dr. Stefan Dietsche

Dr. Keren Grafen

Prof. Dr. Bernd Kleine-Gunk

Peter Hensinger

Dr. Christiane Kupsch

Dr. Hermann Kruse

Dr. Kurt E. Müller

PD Dr. Michael Nehls

Dr. Helena Orfanos-Boeckel

Dr. Sebastian Prochnow

Matthias Salewski

Dr. Anne Schönbrunn

Prof. Dr. Lutz Schomburg

Prof. Dr. Rainer H. Straub

Andrea Thiem

Prof. Dr. Hans-Dieter Volk

Dr. Volker von Baehr

Festvortrag von Dr. Kurt E. Müller:

Rückblick auf über 30 Jahre Klinische Umweltmedizin

Online-Anmeldung:

umjt.de

Die Registrierung zum Kongress erfolgt über das Online-Formular auf:

www.dbu-online.de/veranstaltungen/kongress-anmeldung