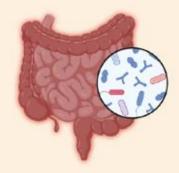
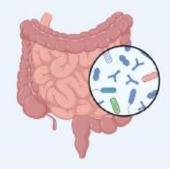
Differenzierung von Entzündungszuständen der Darmschleimhaut - Moderne Labordiagnostik -

Andrea Thiem Christiane Kupsch

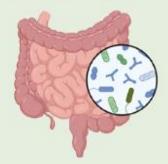
IMD Berlin MVZ


Darmentzündungen treten in verschiedenen Formen und Abstufungen auf

Diseased

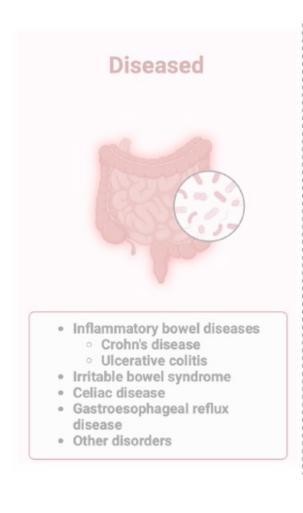

- Inflammatory bowel diseases
 - Crohn's disease
 - Ulcerative colitis
- · Irritable bowel syndrome
- Celiac disease
- Gastroesophageal reflux disease
- Other disorders

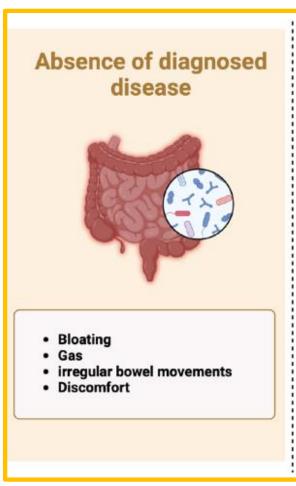
Absence of diagnosed disease

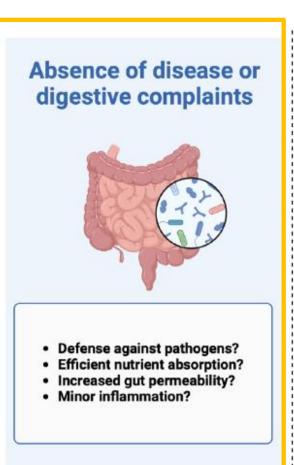

- Bloating
- Gas
- · irregular bowel movements
- Discomfort

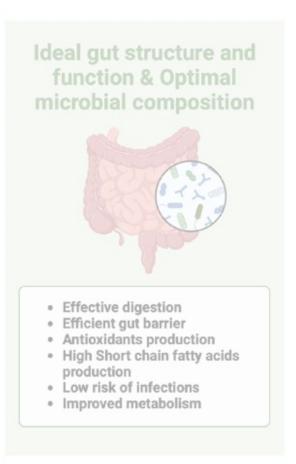
Absence of disease or digestive complaints

- Defense against pathogens?
- Efficient nutrient absorption?
- · Increased gut permeability?
- Minor inflammation?

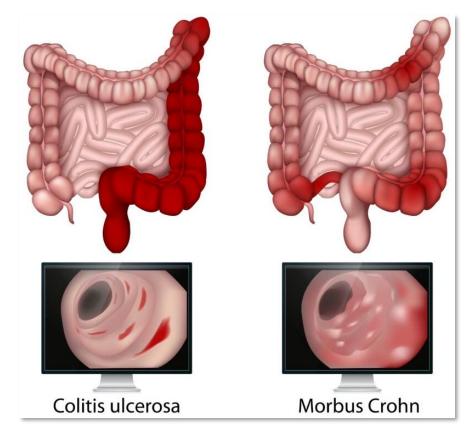

Ideal gut structure and function & Optimal microbial composition

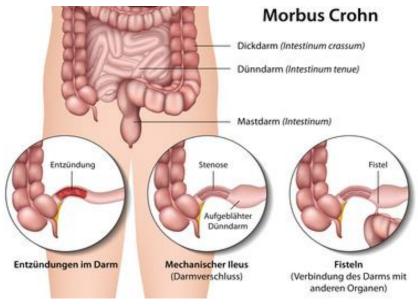



- Effective digestion
- Efficient gut barrier
- · Antioxidants production
- High Short chain fatty acids production
- · Low risk of infections
- · Improved metabolism



Stuhldiagnostik bei unklaren Symptomen, nicht nur den Darm betreffend





Chronisch-entzündliche Darmerkrankungen (CED)

Colitis ulcerosa

- Entzündung bildet flächige Geschwüre auf der Darmschleimhaut aus.
- Ulcus = Geschwür
- Die Entzündung beschränkt sich auf die oberste Schicht der Darmwand.
- Betroffen sind nur der Enddarm und der Dickdarm.

Symptome bei CED

Die Symptome sind je nach Schwere der Erkrankung unterschiedlich, aber auch eindeutig:

- Schmerzhafter Stuhldrang
- Häufiger, auch nächtlicher Stuhldrang bis zu 20-mal am Tag
- Krämpfe und Koliken im Unterbauch, hauptsächlich vor dem Gang zur Toilette
- Blutig-schleimige Durchfälle
- Blähungen
- Leichtes bis hohes Fieber
- Appetitlosigkeit, Müdigkeit, Gewichtsabnahme
- Blutarmut und Eisenmangel durch den Blutverlust
- Verläuft die Erkrankung moderat, bleibt es bei häufigen Toilettengängen und blutigem Stuhl.
- Bei einem schwereren Verlauf werden die Toilettengänge noch zahlreicher und es kommen Krämpfe und tw. auch Fieber dazu. Patienten fühlen sich geschwächt und kraftlos

Symptome bei CED

Auch extraintestinale Symptome treten auf:

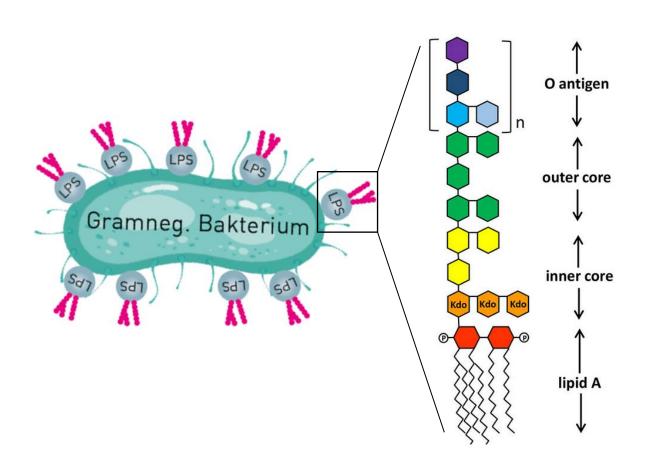
- Gelenkentzündungen
- Erkrankungen aus dem rheumatischen Formenkreis
- Augenentzündungen
- Schmerzhafte, rötliche Knötchen unter der Haut
- Entzündungen der Leber
- Verengung der Gallengänge durch Entzündungen und Vernarbungen (primär sklerosierende Cholangitis)
- Nierensteine oder Gallensteine
- Wachstums- und Entwicklungsstörungen bei Kindern

Symptome bei unspezifischer Darmentzündung

- Bauchschmerzen
- Blähbauch
- Diarrhoe
- Obstipation
- Übel riechender Stuhl
- Erschöpfung, Müdigkeit
- Gewichtsverlust
- Depression
- Multiple Nahrungsmittelunverträglichkeiten
- Unverträglichkeit von Fruktose, Lactose, Sorbit

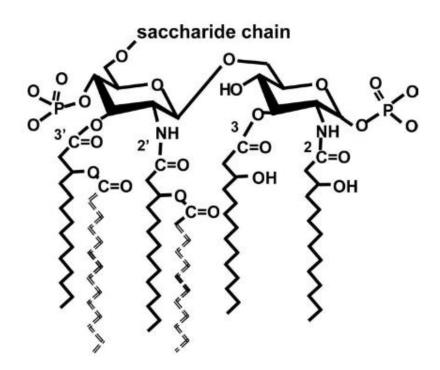
Auslöser von Darmentzündungen

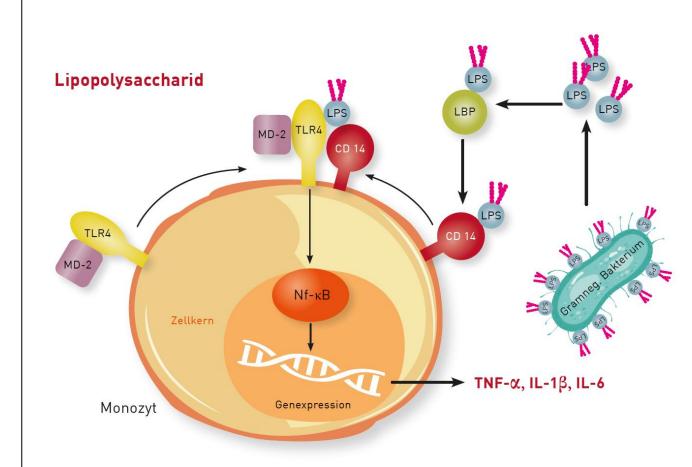
- Infektionen (Salmonellen, Campylobacter, E. coli , Noroviren, Lamblien, Candida etc.)
- Genetik (Prädisposition, z.B. durch DAO-Genetik, Laktasemangel, M. Chron-Polymorphismen (NOD2, ATG16L1)
- Ernährung (proentzündlich, Farb- und Konservierungsstoffe)
- Toxinbelastung (z.B. Mykotoxine)
- Toxische Metalle z.B. aus Zahnersatzmaterialien
- Stress
- Nahrungsmittelunverträglichkeiten Laktose, Fruktose, Histamin, Allergien
- Antibiotika/Medikamente
- Durchblutungsstörungen
- Strahlenkolitis
- Dysbiose



Dysbiose als Quelle für immunaktivierendes Lipopolysaccharid (LPS)

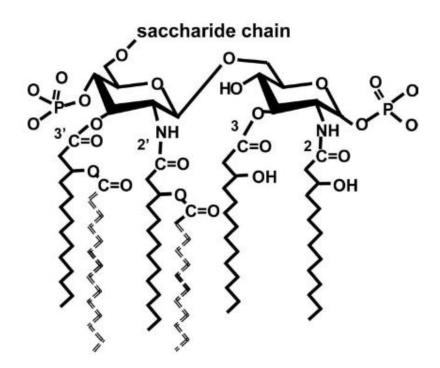
Untersuchung	Wert		Referenzbereich		
Quantitatives Mikrobiotaprofil + Mykologie (Kultur)				
Immunmodulierende Bakterien					
Enterococcus spp.	4x10^8	KBE/g	1x10^6 - 1x10^8		
Escherichia coli	7x10^6	KBE/g	1x10^6 - 1x10^8		
Verwertung von Kohlehydraten					
Bacteroides spp.	> 1x10^8	KBE/g	>= 1x10^8		
Bifidobacterium spp.	< 1x10^6	KBE/g	>= 1x10^8		
Lactobacillus spp.	< 1x10^3	KBE/g	>= 1x10^5		
Verwertung von Eiweiß (Proteobacteria)				_	
Enterobacteriaceae	< 1x10^6	KBE/g	<= 1x10^6		
E.coli Biovare	8x10^7	KBE/g	<= 1x10^6		
Citrobacter spp.	< 1x10^6	KBE/g	<= 1x10^6		Proteobacteria
Enterobacter spp.	1x10^8	KBE/g	<= 1x10^6		LPS-tragende
Klebsiella spp.	8x10^7	KBE/g	<= 1x10^6		•
Serratia spp.	< 1x10^6	KBE/g	<= 1x10^6		Bakterien
Proteus spp.	< 1x10^6	KBE/g	<= 1x10^6		
Pseudomonas spp.	< 1x10^5	KBE/g	<= 1x10^5		
weitere Darmbakterien					
alpha-hämolysierende Streptokokken	< 1x10^5	KBE/g	<= 1x10^5		
beta-hämolysierende Streptokokken	< 1x10^5	KBE/g	<= 1x10^5		
Mykologie (Kultur)					
Candida spp.	< 1x10^3	KBE/g	<= 1x10^3		
Candida albicans	< 1x10^3	KBE/g	<= 1x10^3		
Geotrichum spp.	< 1x10^3	KBE/g	<= 1x10^3		
Schimmelpilze	< 1x10^3	KBE/g	<= 1x10^3		
pH-Messung	6,5		5,5 - 6,5	normal	


LPS ist ein Bestandteil der äußeren Zellmembran von gramnegativen Bakterien


Die Struktur des <u>O-Antigens</u> (Zuckerzusammensetzung, Länge) und die des <u>Lipids A</u> (Anzahl der Phosphatgruppen, Anzahl und Länge der Acylketten) beeinflusst die Immunogenität.

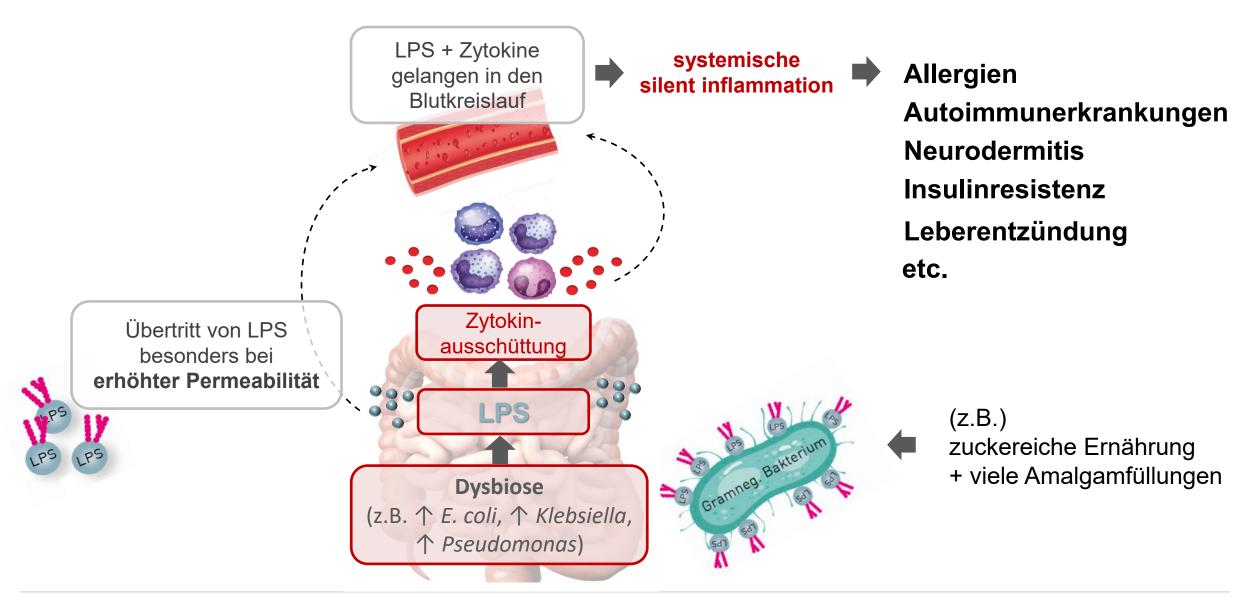
LPS-Struktur bestimmt seine immunogene Wirkung

➤ LPS mit **sechs Acylketten** werden vom MD-2-TLR4-Rezeptor besonders gut erkannt.


Weniger oder verzweigte Acylketten sind weniger immunogen (z.B. Bacteroides).

LPS-Struktur bestimmt seine immunogene Wirkung

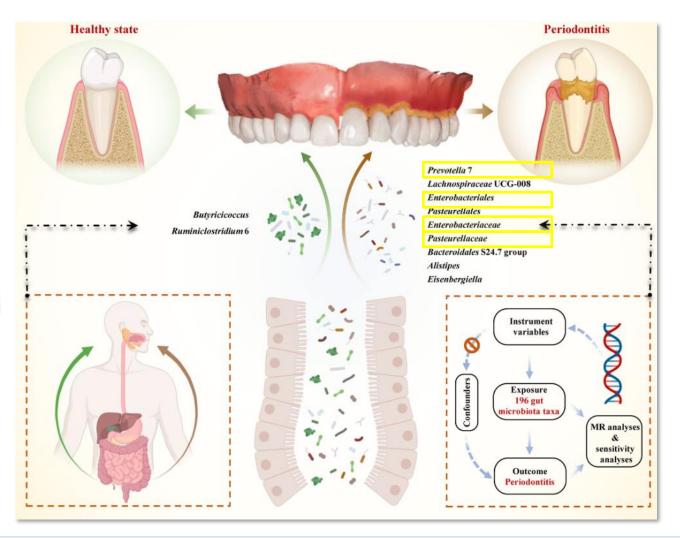
➤ LPS mit **sechs Acylketten** werden vom MD-2-TLR4-Rezeptor besonders gut erkannt.


Weniger oder verzweigte Acylketten sind weniger immunogen (z.B. Bacteroides). ➤ Beispiele für Bakterien mit **Hexa-Acylketten**

Shigella sonnei, S. flexneri d
Haemophilus influenzae
Neisseria gonorrhoeae, N. meningitidis
Vibrio cholerae O1
Campylobacter sp.
Aeromonas salmonicida
Escherichia coli
Klebsiella pneumoniae
Enterobacter cloacae
Serratia marcescens
Proteus mirabilis

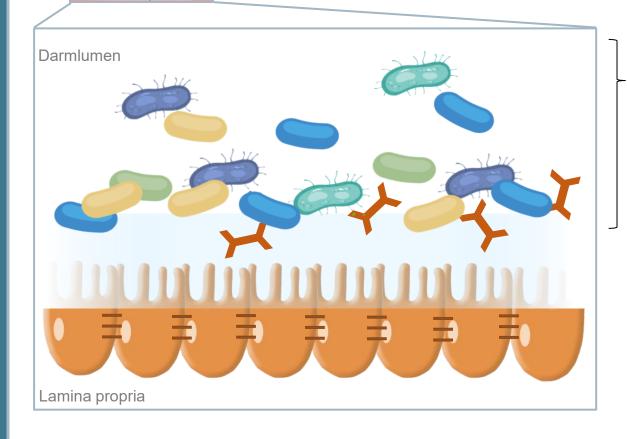
LPS von kommensalen *Proteobacteria* und obligaten Pathogenen sind für das Immunsystem gleichermaßen sichtbar!

Proinflammatorische Auswirkungen der Dysbiose


Entzündungsmediatoren aus dem Darm erhöhen das Parodontitis-Risiko

Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study

Shulu Luo, Weiran Li, Qianqian Li, Mengqi Zhang, Xun Wang, Shuyi Wu* and Yan Li*


Department of Prosthodontics, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China

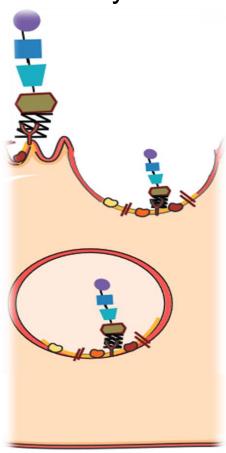
Diese Bakterien tragen immunogene Lipopolysaccharide (LPS) → ↑Zytokinausschüttung

Die Darmbarriere entscheidet mit über die Entstehung von Entzündung

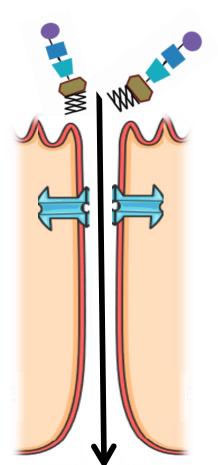
Darmmikrobiota

➤ Kolonisationsresistenz

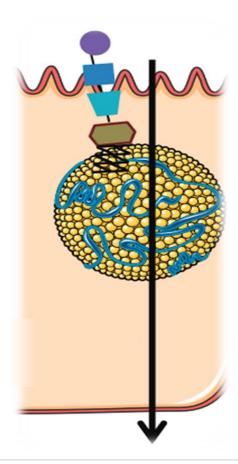
sekretorisches IgA ➤ Pathogenbindung


Muzinschicht

mechanische Barriere, verlangsamte Diffusion Schutz der Epithelschicht vor Pathogenkontakt



LPS gelangt auf drei Wegen in das Blut

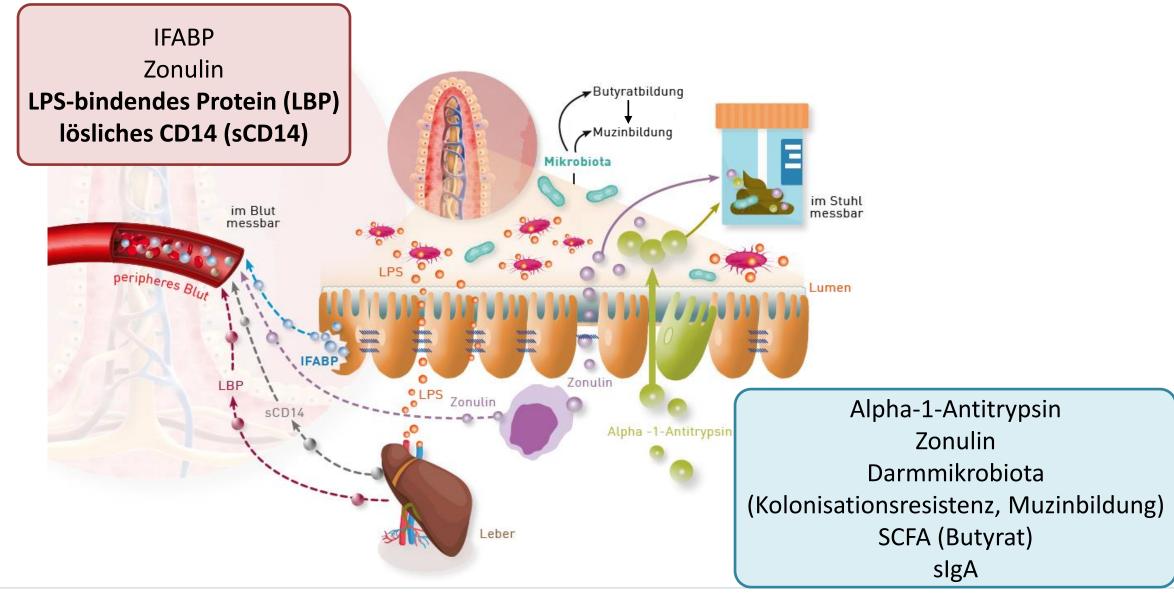

Transzellulär durch Endozytose

Parazellulär durch geöffnete tight junctions

Transzellulär durch Bindung an Chlyomikronen

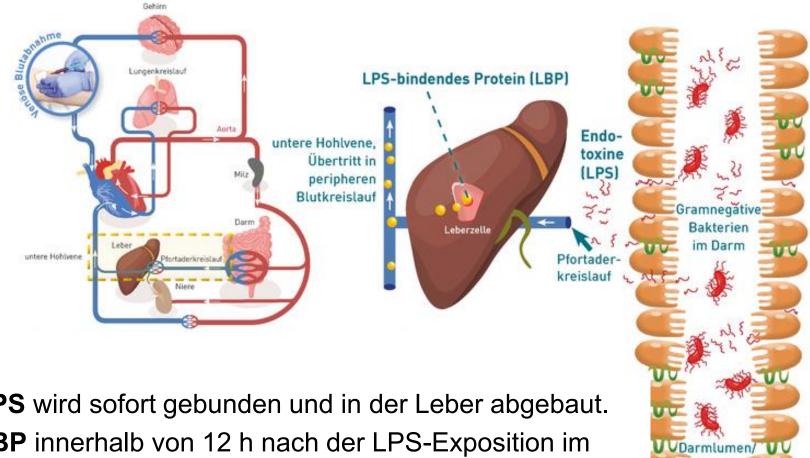
LPS gelangt auf drei Wegen in das Blut

Transzellulär durch Bindung Parazellulär durch geöffnete Transzellulär durch an Chlyomikronen tight junctions Endozytose Alle Wege verstärkt durch Dysbiose mit †Proteobacteria Erhöht bei Erhöht bei Erhöht bei ↓ Muzinschicht ↓ Muzinschicht fettreicher Ernährung ↓ Kolonisationsresistenz ↓ Butyrat


Ärztlicher Befundbericht

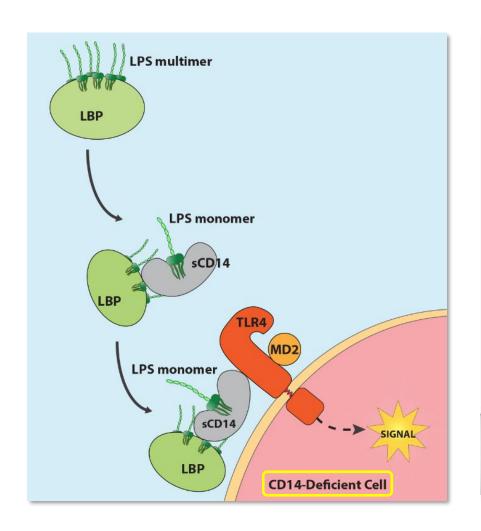
Labor Berlin					
Untersuchung	Wert		Referenzbereich		
Funktionelles Mikrobiotaprofil (PCR + Kultur	.)				
Dysbiose-Index	3	3		1 2 3 4 5	
bakterielle Diversität	0,8		> 2,5	•	
Butyratbildung	vermindert		normal	•	
Mukosaprotektion	vermindert		normal	•	
Kolonisationsresistenz	vermindert		normal	•	
Proinflammatorische Bakterien	erhöht	erhöht		•	
Histaminbildner	normal		normal	•	
Candida-Pilze	normal	normal		•	
pH-Messung	7,5	7,5		erhöht	
Butyratbildung (PCR)					
Anaerobutyricum hallii	normal		normal		
Eubacterium rectale	vermindert				
Faecalibacterium prausnitzii	leicht vermi	leicht vermindert			
Mukosaprotektion (PCR)					
Akkermansia muciniphila	vermindert		normal		
Faecalibacterium prausnitzii	leicht vermi	leicht vermindert			
Lactobacillus spp.	normal				
Kolonisationsresistenz (PCR)					
Bacteroides spp.	vermindert		normal		
Bacteroides spp. & Prevotella spp.	vermindert	vermindert			
Bifidobacterium spp.	normal		normal		
Lactobacillus spp.	normal				
Immunmodulierende Bakterien (Kultur)					
Enterococcus spp.	3x10^5	KBE/g	1x10^6 - 1x10^8		
Escherichia coli	< 1x10^4	KBE/g	1x10^6 - 1x10^8		
Proinflammatorische Bakterien (Kultur)	-	, 8			
Enterobacteriaceae	< 1x10^6	KBE/g	<= 1x10^6		
E.coli Biovare	> 1x10^8	KBE/g	<= 1x10^6	•	
Citrobacter spp.	< 1x10^6	KBE/g	<= 1x10^6		

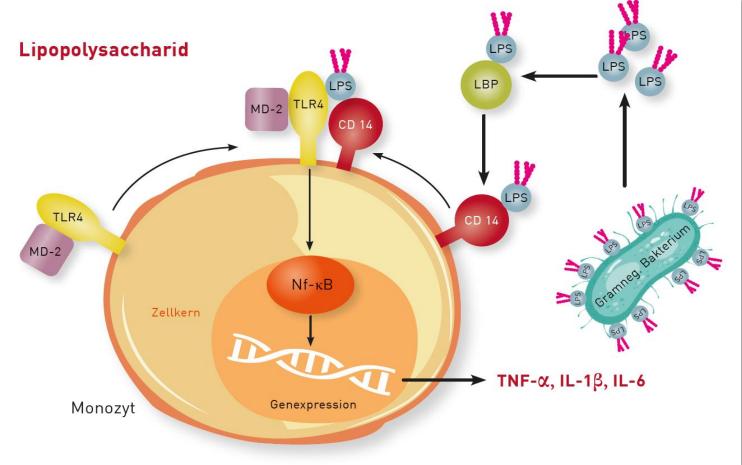
- → Massive Unterversorgung mit barrierestärkenden Bakterien
- → LPS-tragende Bakterien erhöht



Labormarker für die Darmbarriere

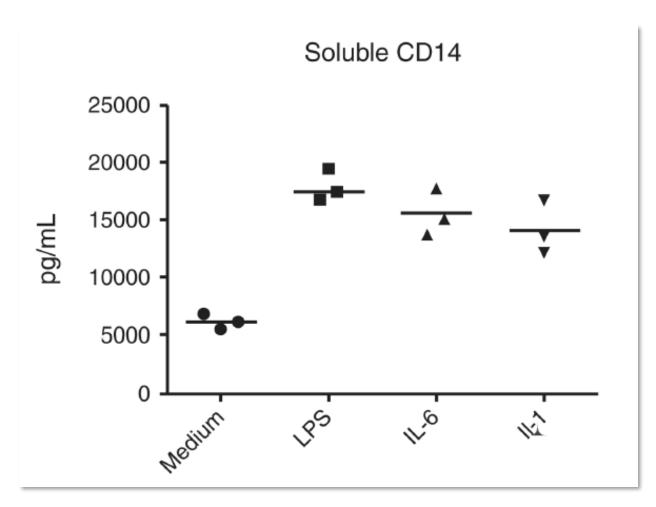
Serum-Marker für Leaky Gut und LPS-Belastung: LBP




- LPS wird sofort gebunden und in der Leber abgebaut.
- LBP innerhalb von 12 h nach der LPS-Exposition im Blutkreislauf erhöht messbar. LBP-Werte erreichen innerhalb von 24 h ihren Höchstwert.

LBP im Serum spiegelt sehr gut die tagesdurchschnittliche Endotoxinbelastung wider – im Unterschied zum Endotoxin-Blutspiegel

LBP und sCD14 regulieren gemeinsam die Immunantwort bei LPS-Belastung



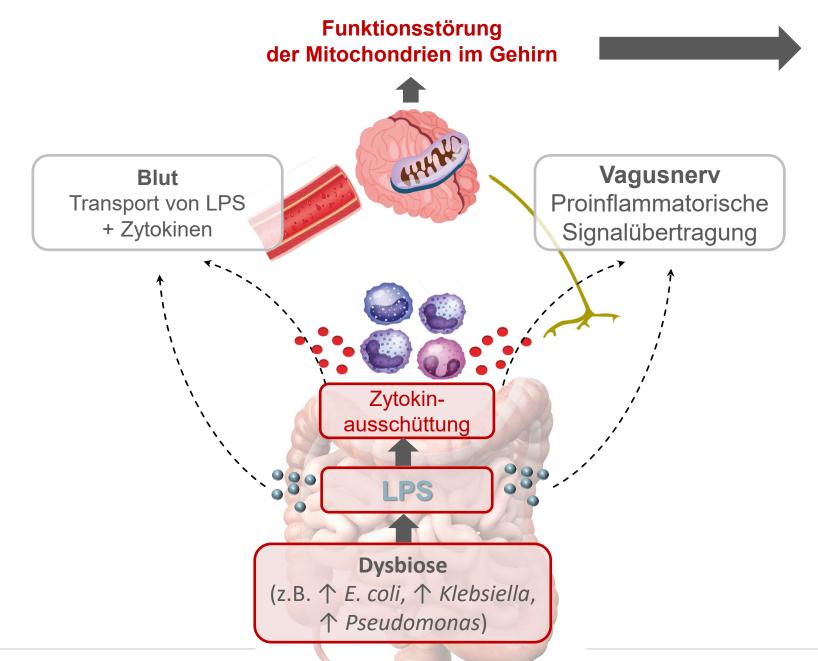
sCD14 ist ein Marker für Monozyten-Aktivierung

- Die lösliche Isoform von CD14 kann durch Abspaltung von der Zelloberfläche oder durch Freisetzung aus intrazellulären Pools gebildet werden.
- LPS-Stimulation führt zu vermehrter Ausschüttung von sCD14 in PBMCs
- Stimulation mit gleicher Menge IL-6 oder IL-1β führte zu einer ähnlichen (etwas geringeren)
 Ausschüttung von sCD14.

PBMCs = Peripheral Blood Mononuclear Cell; deutsch: ,mononukleäre Zellen des peripheren Blutes', dazu gehören Lymphozyten und Monozyten

Ärztlicher Befundbericht

Untersuchung	Ergebnis	Einheit	Referenzbereich	
IFABP i.S. (ELISA)	1155	pg/ml	< 1827	
Zonulin i.S. (EIA)	58,9	ng/ml	< 34	


Es liegt ein Hinweis auf *leaky gut* vor. Erhöhtes Zonulin weist auf eine erhöhte Durchlässigkeit der Zell-Verbindungen (tight junctions) im Darmepithel hin.

Lipopolysaccharid Bindendes Protein (CLIA) 12,0 pg/ml < 8,00 Lösliches CD14 i. S. (ELISA) 1821 pg/ml < 1400

Es liegt ein Hinweis auf eine aktuell erhöhte Endotoxinbelastung (erhöhtes LBP) mit gesteigerter Monozytenaktivierung (erhöhtes sCD14) vor. Eine mögliche Ursache kann eine verstärkte Translokation von Endotoxin aus dem Darm oder eine systemische Infektion mit gramnegativen Bakterien sein.

LBP und sCD14 spiegeln die Belastung mit immunogenem LPS wider.

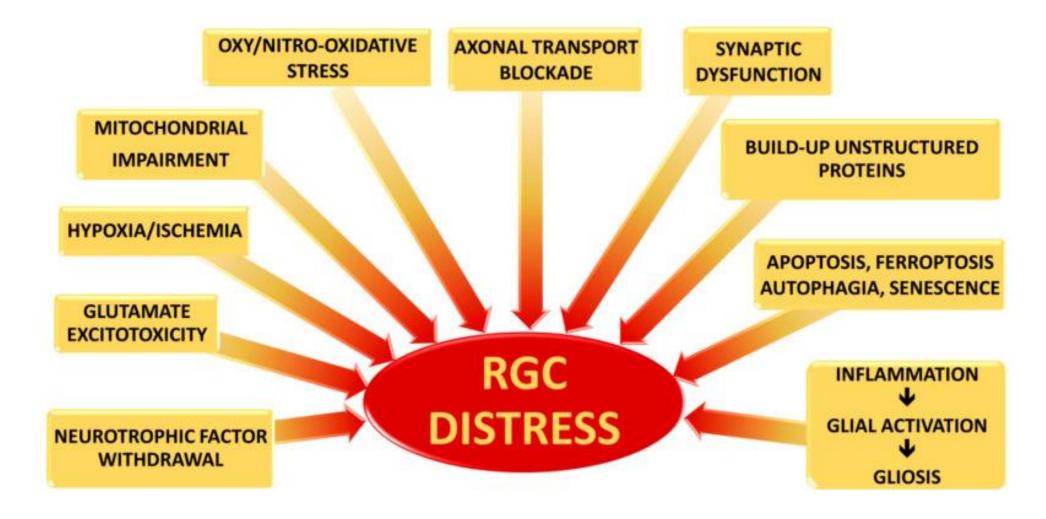
Neuroinflammation

Primäres Offenwinkelglaukom

Neurodegeneration

Parkinson

Demenz

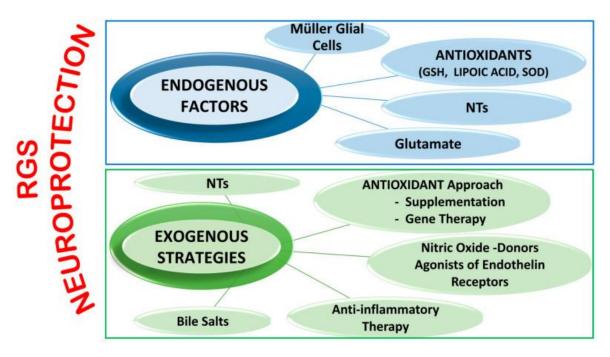

Depression

Das primäre Offenwinkelglaukom (POAG)

- > ist eine chronisch, fortschreitende Optikusneuropathie.
- > erworbene Atrophie des Sehnervs und ein Verlust von retinalen Ganglienzellen und deren Axonen.
- > dieser Zustand ist mit einem offenen Kammerwinkel verbunden.
- ➤ Das primäre Offenwinkelglaukom ist eine potenziell zur Erblindung führende Augenerkrankung.
- eine frühzeitige Diagnose und Behandlung kann in der Regel eine Sehbehinderung verhindern.

Risikofaktoren für die Störung retinaler Ganglienzellen bei Glaukom und potenzielle neuroprotektive Intervention

Neuroprotektive Wirkstoffe - Glaukombehandlung

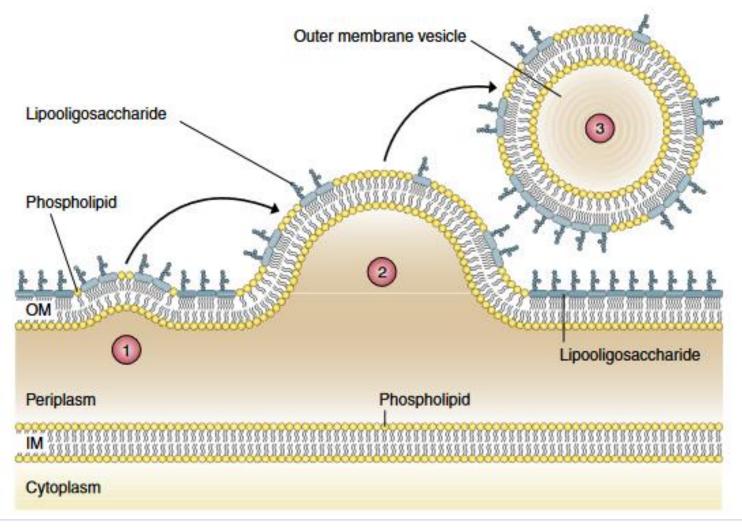

Vitamin E – reduziert die Ödembildung bei einer Ischämie-Reperfusionsverletzung

Coenzym Q10 – schützt vor Glutamat-Exzitotoxizität

Alpha-Liponsäure – schützt vor oxidativem Stress


Carotinoide – neuroprotektive Effekte

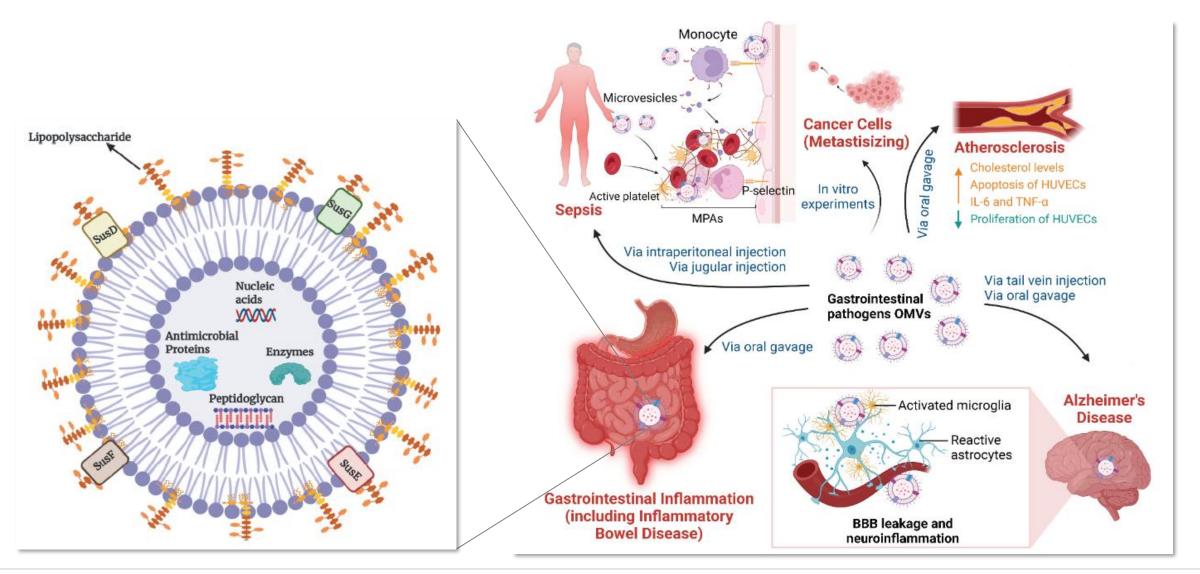
BDNF - erhöhen


Darmentzündungen erhöhen das Demenz-Risiko

- Die Häufigkeit von Demenz war bei Patienten mit CED signifikant erhöht.
 (5,5 % vs. 1,4 % in Kontrollgruppe).
- Unter den verschiedenen Demenzarten war das Risiko, an Alzheimer-Demenz zu erkranken, am stärksten erhöht.
- Bei Patienten mit CED wurde Demenz im Durchschnitt im Alter von 76 Jahren diagnostiziert, verglichen mit 83 Jahren bei der Kontrollgruppe.
- Das Demenzrisiko unterschied sich nicht zwischen den Geschlechtern oder zwischen Colitis ulcerosa und Morbus Chron

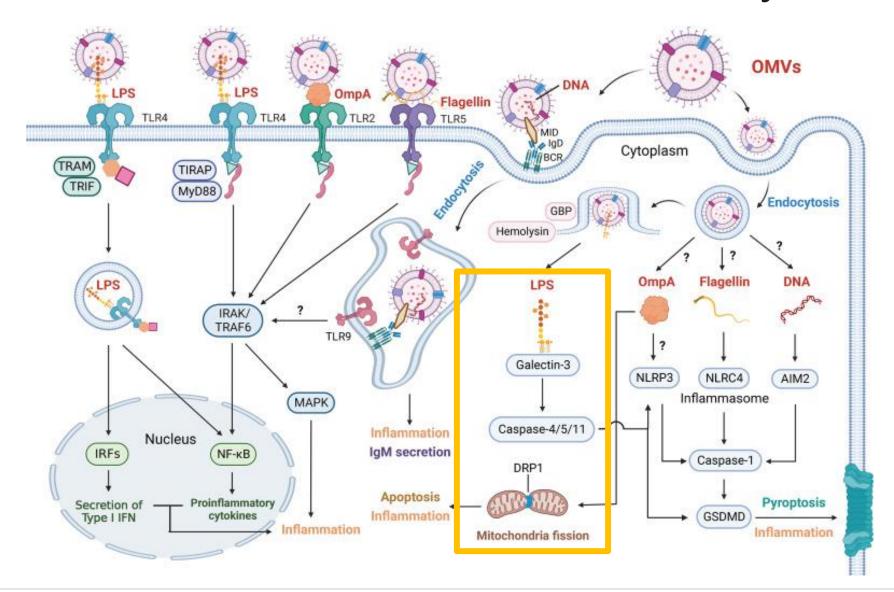
Gramnegative Bakterien bilden Outer Membrane Vesicles (OMVs)

Gramnegative Bakterien bilden Outer Membrane Vesicles (OMVs)

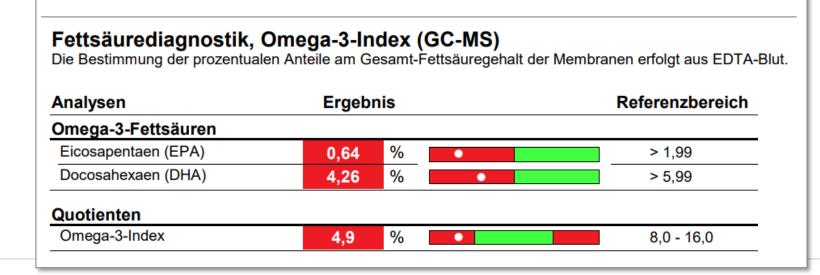


Gramnegative Bakterien bilden Outer Membrane Vesicles (OMVs)

Aus parodontalen, gastrointestinalen und pulmonalen Pathogenen stammende OMVs sind an entzündlichen Erkrankungen beteiligt und verursachen Entzündungen entfernter Organe oder Gewebe in Abwesenheit lebender Bakterien



OMVs sind an Inflammationsprozessen beteiligt


OMVs verursachen mitochondriale Dysfunktion

Mitochondrienfunktion oxidativer Stress - Omega 3-Index

Labor Berlin				Ärztlicher Befundbericht		
MDA-LDL i.S.	(ELISA)	90.5	U/l	<	80	
ATP intrazellulär°°	(CLIA)	0.85	μM	>	2.5	
Der Messwert bezieht sich stan	` ,		F			

Contents lists available at ScienceDirect

Brain Behavior and Immunity

journal homepage: www.elsevier.com/locate/ybrb

Check for updates

Intermittent systemic exposure to lipopolysaccharide-induced inflammation disrupts hippocampal long-term potentiation and impairs cognition in aging male mice

E.B. Engler-Chiurazzi ^{a,b,c,*}, A.E. Russell ^{b,c,d,e}, J.M. Povroznik ^{b,c}, K.O. McDonald ^a, K.N. Porter ^b, D.S. Wang ^c, J. Hammock ^b, B.K. Billig ^f, C.C. Felton ^f, A. Yilmaz ^f, B.G. Schreurs ^c, J.P. O'Callaghan ^f, K.J. Zwezdaryk ^g, J.W. Simpkins ^{b,c}

Remien

Dietary Protection against Cognitive Impairment, Neuroinflammation and Oxidative Stress in Alzheimer's Disease Animal Models of Lipopolysaccharide-Induced Inflammation

Davide Decandia 1,2,† , Francesca Gelfo 1,3 , Eugenia Landolfo 1, Francesca Balsamo 1,3, Laura Petrosini 1,0 and Debora Cutuli 1,2,*

Review

Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use

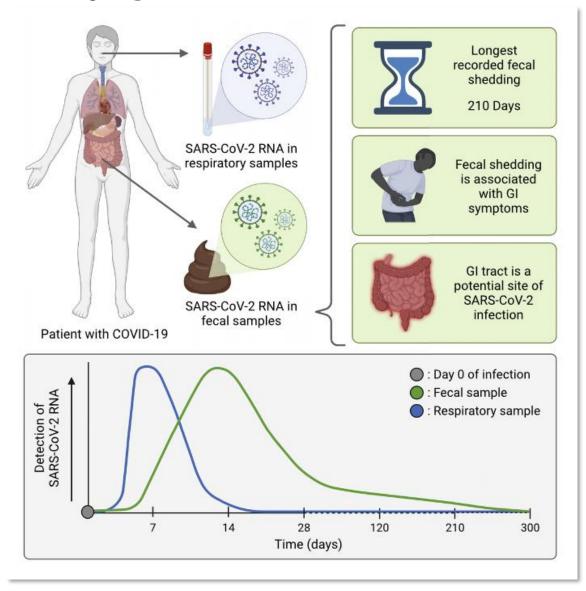
Anna Skrzypczak-Wiercioch ¹ and Kinga Sałat ²,*

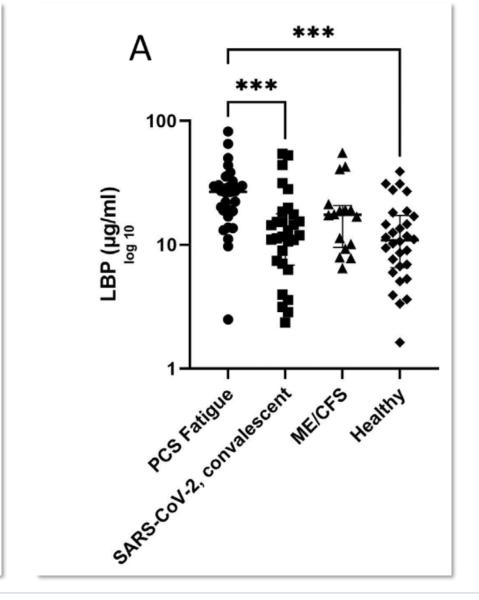
pubs.acs.org/chemneuro

Open Access

This article is licensed under CC-BY 4.0 © (1)

Perspective


Lipopolysaccharide Effects on Neurotransmission: Understanding Implications for Depression


Published as part of ACS Chemical Neuroscience special issue "Monitoring Molecules in Neuroscience 2024". L. Batey,[†] B. Baumberger,[†] H. Khoshbouei, and P. Hashemi*

"LPS führt zu einer Verringerung von Dopamin und Serotonin und zu einem Anstieg des Noradrenalinspiegels in verschiedenen Regionen des Gehirns. Diese Veränderungen sind kein Anzeichen für eine "Funktionsstörung", sondern sollen den Körper dazu anregen, sich durch eine Veränderung der Stimmung von einer Immunreaktion zu erholen (z.B. Energieeinsparung für die Heilung)."

Leaky gut ist eine Ursache für Post-COVID-Fatique

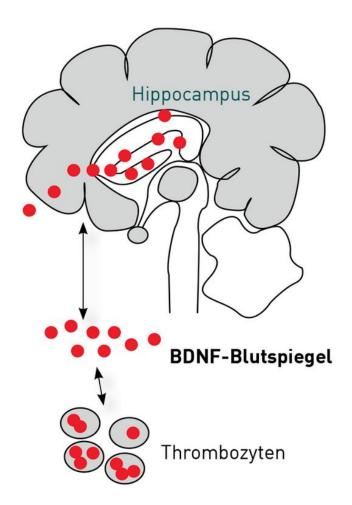
Darmentzündung - BDNF

BDNF – "brain-derived-neurotropic factor"

- Wachstumsfaktor
- wird im Gehirn vor allem im Hippocampus gebildet
- Wichtig für Langzeitgedächtnis und abstraktes Denken
- kann die Blut- Hirn-Schranke frei passieren
- BDNF-Spiegel im Serum korreliert mit dem Volumen des Hippocampus
- Schrumpfen des Hippocampus hat ein Absinken des BDNF-Serumspiegels zur Folge.

Erniedrigte BDNF-Spiegel bei

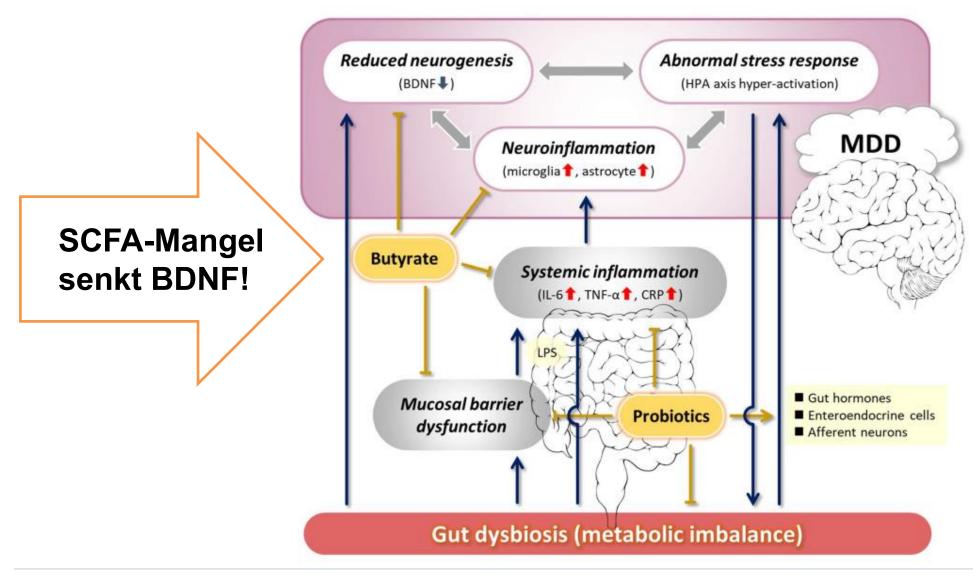
- Depression
- Schlafstörungen (BDNF-Gehalt korreliert mit der Schwere der Schlafstörung).
- Posttraumatisches Stress-Syndrom
- Burnout


Stress senkt den BDNF-Spiegel

Eine Ursache dafür ist, dass Stress die Expression von BDNF hemmt, wahrscheinlich über die Sekretion des Stresshormons Cortisol. Chronischer Stress kann daher den BDNF-Spiegel bereits senken, bevor sich neuroanatomische Veränderungen manifestieren. Besonders prädisponiert sind dabei möglicherweise Patienten, die einen Polymorphismus im BDNF-Gen tragen. Dieser ist mit einer stärkeren Cortisol-Ausschüttung bei Stressreizen assoziiert.

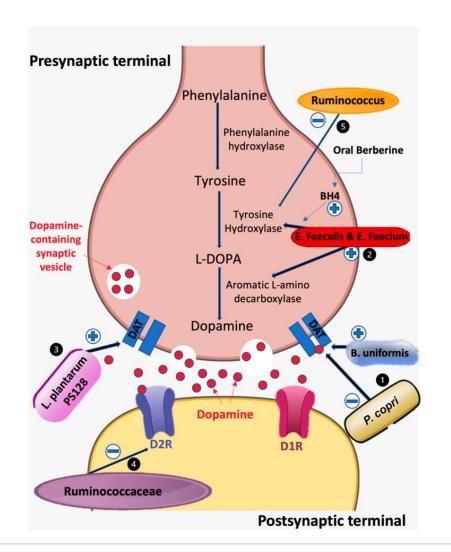
Darmentzündung BDNF

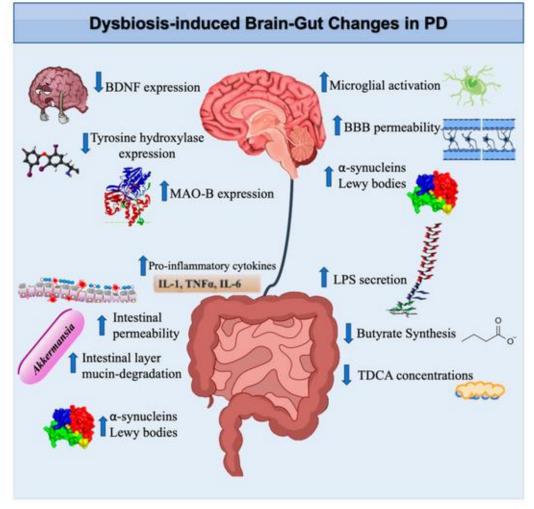
"brain-derived-neurotropic factor"



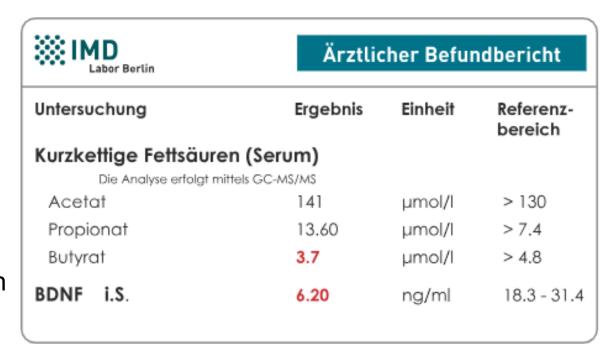
- ➤ Der vom Gehirn abgeleitete neurotrophe Faktor (BDNF) wird im gesamten Gastrointestinaltrakt stark exprimiert.
- ➤ Er spielt eine entscheidende Rolle bei der Regulierung von Darmmotilität, Sekretion, Empfindung, Immunität und Schleimhautintegrität.
- ➤ Eine Fehlregulation der BDNF-Signalgebung wird mit der Pathophysiologie verschiedener GI-Erkrankungen in Verbindung gebracht, darunter entzündliche Darmerkrankungen, Reizdarmsyndrom, funktionelle Dyspepsie und diabetische Gastroenteropathie

Abb. 1 Das im Serum zirkulierende BDNF stammt sowohl aus dem Hippocampus als auch aus thrombozytären Speichern. Schrumpft der Hippocampus (z. B. aufgrund von depressiven Erkrankungen oder hohem Lebensalter), sinkt der BDNF-Serumspiegel insgesamt ab.




Dysbiose senkt BDNF

Dysbiose senkt BDNF Einfluss auf Neurotransmitter

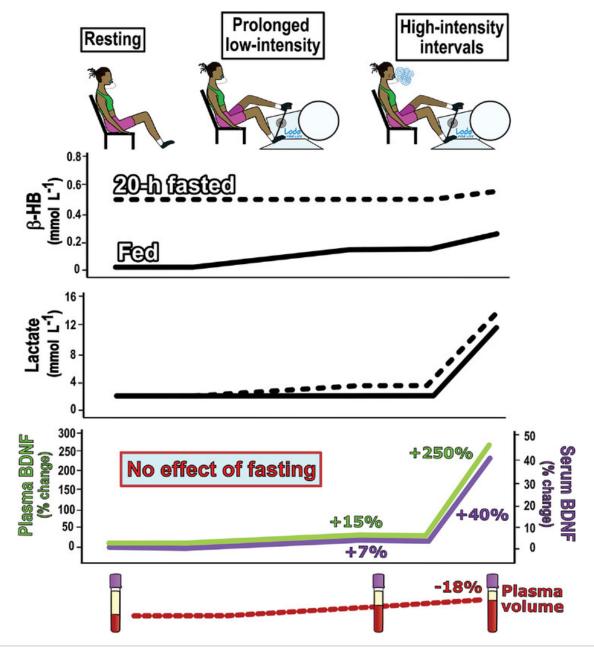


BDNF und Darm:

- ➤ Regulierung der Darmmotilität
- Modulation der Darmsekretion
- ➤ Aufrechterhaltung der Darmbarriereintegrität
- > Immunmodulation im Darm
- ➤ Modulation der Nozizeption und Sensibilität
- ➤ Pathogenese entzündlicher Darmerkrankungen
- > pathogener Faktor beim Reizdarmsyndrom
- > Verändert die Magenmotorik des Diabetikers
- > reguliert strukturelle Plastizität und Neuroprotektion im ENS

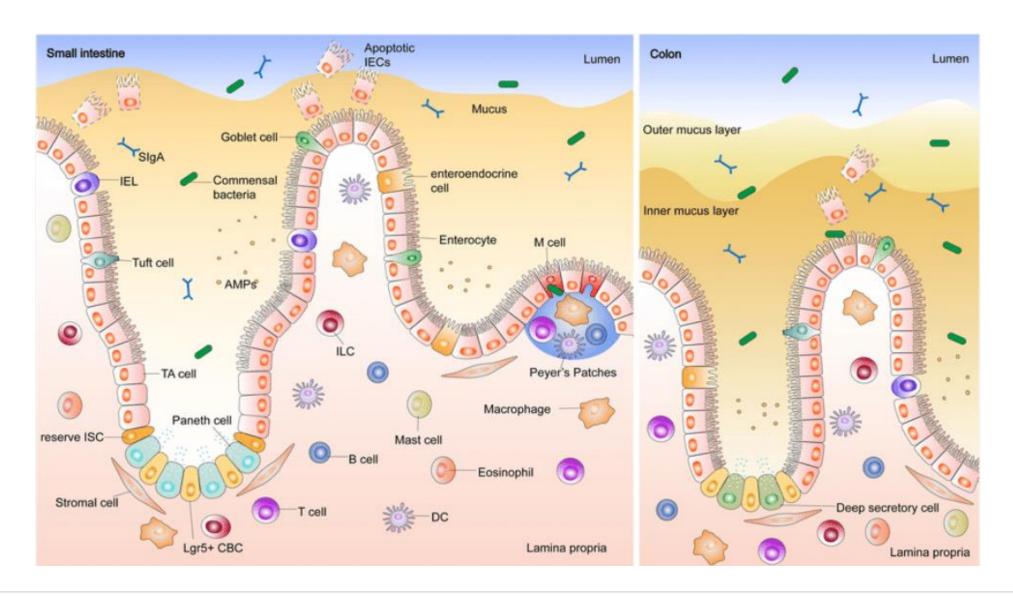
Erniedrigte BDNF-Spiegel im Blut Folge zu geringer im Blut zirkulierender SCFAs

Labor Berlin		Ärzt	Ärztlicher Befundberich		
ntersuchung	Ergebnis	Einheit	Referenzbereich		
	PIA) 16.5 IF-Spiegel weisen aus eine	ng/ml gesteigerte Stress	18.3 - 31.4		
hin und wurden :	n Studien gehäuft bei Depr ren (GC-MS) i. Serum				
hin und wurden	n Studien gehäuft bei Depr				
hin und wurden :	n Studien gehäuft bei Depr ren (GC-MS) i. Serum	ression und Fatigu	e beobachtet.		

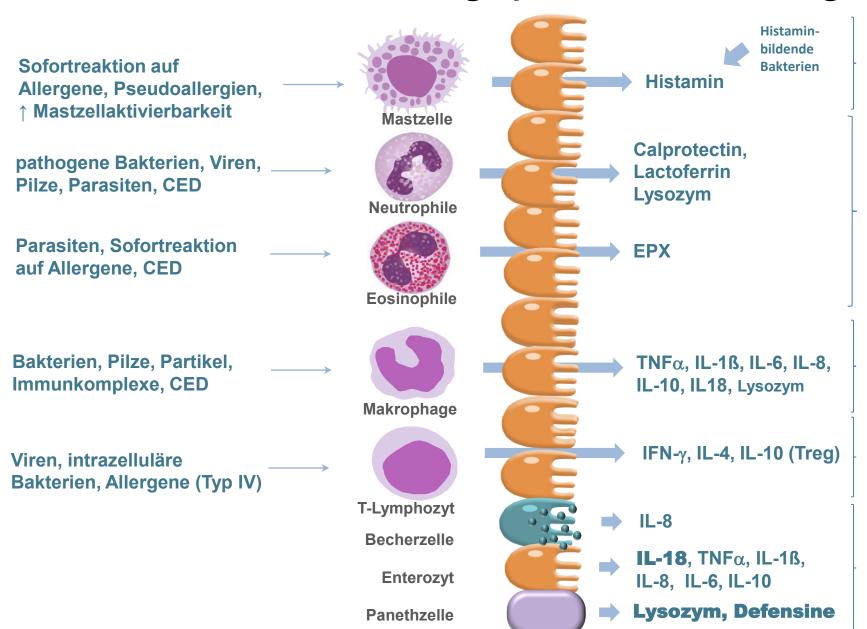


BDNF (Brain-derived neurotrophic factor)

- Erniedrigte BDNF-Serumwerte
 - im Alter
 - durch psychosozialen Stress
 - bei Schlafmangel
 - bei Ernährung mit mehrfach gesättigten Fette und Zucker
- Anstieg der BDNF-Serumwerte durch:
 - Sport (Synthese auch durch kontrahierende Muskelzellen)
 - Gabe von Omega-3-Fettsäuren, Zink und Vitamin E
 - Schlafregulation
 - Stressabbau
 - Dysbiose-Therapie und Behandlung von *leaky gut*



Bewegung steigert BDNF

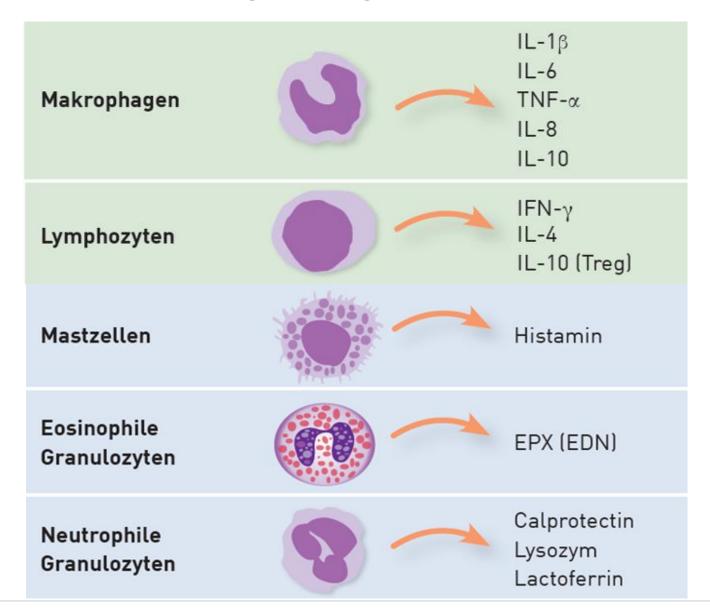


Labormarker für Darmentzündung?

Am Entzündungsprozess beteiligte Zellen

Mastzellaktivierung, (Typ I)-allergische Entzündung

Granulozytäre Infiltration bei Mukosaentzündung

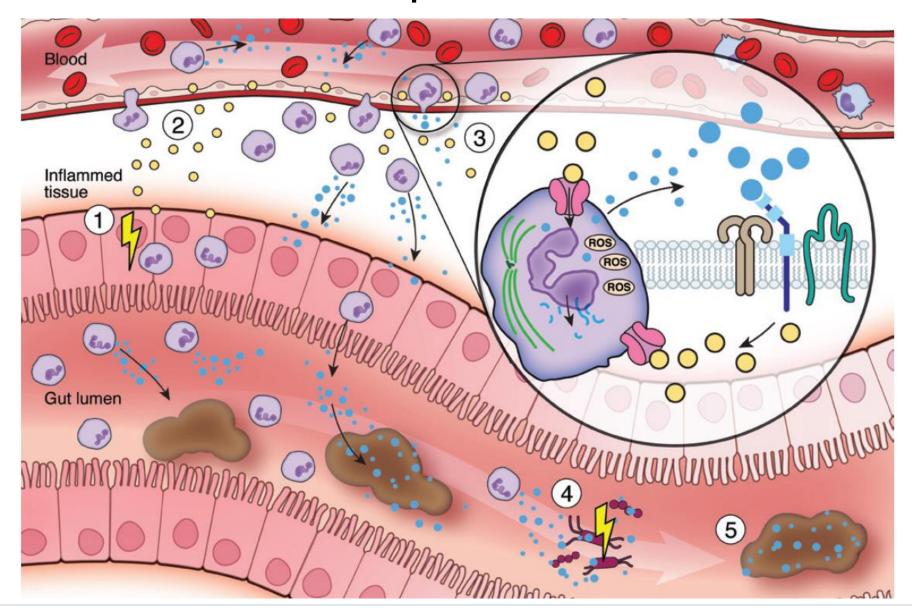

Myelomonozytäre Entzündung

Lymphozytäre Entzündung

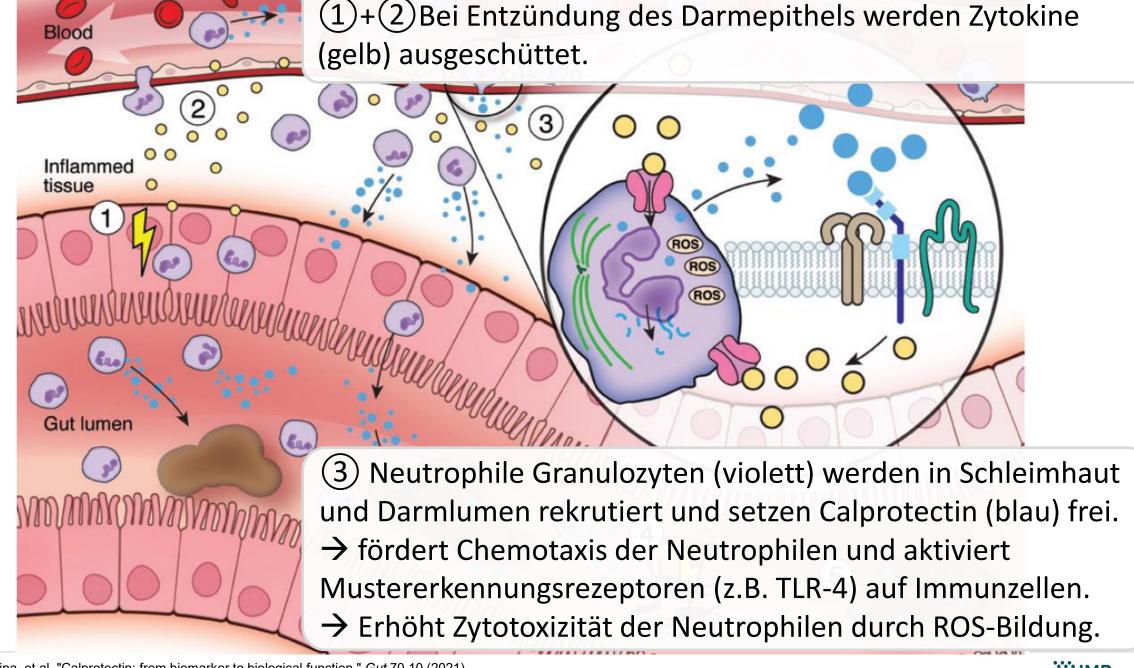
Kontinuierliche Regulation von Schleimhautabwehr und -toleranz

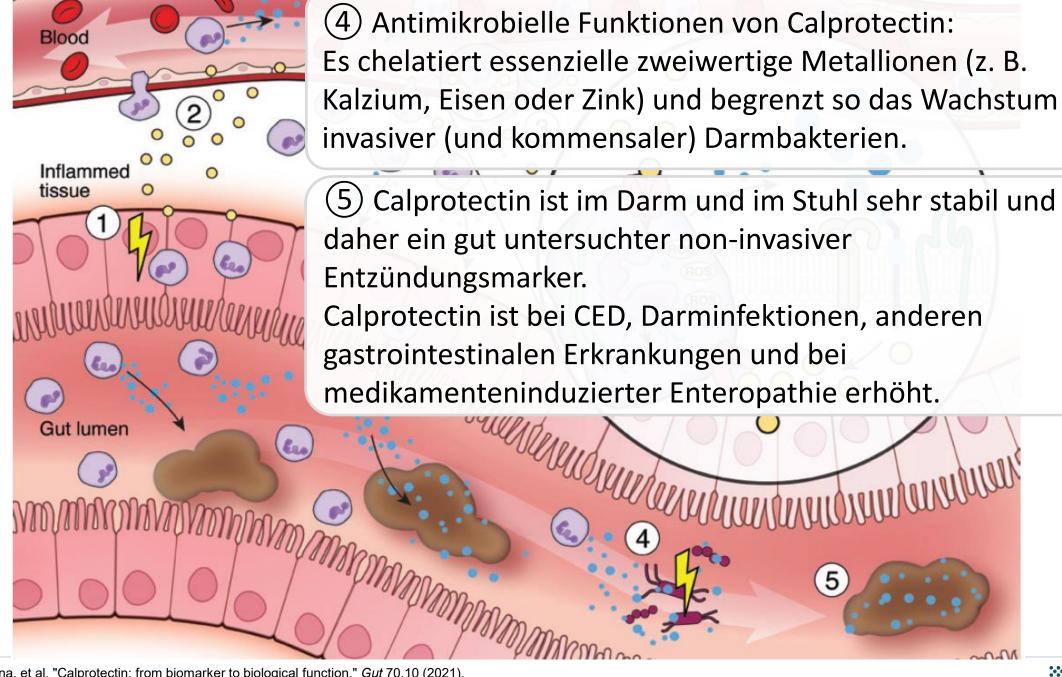
Entzündungsdiagnostik im Stuhl

Entzündungsdiagnostik im Stuhl

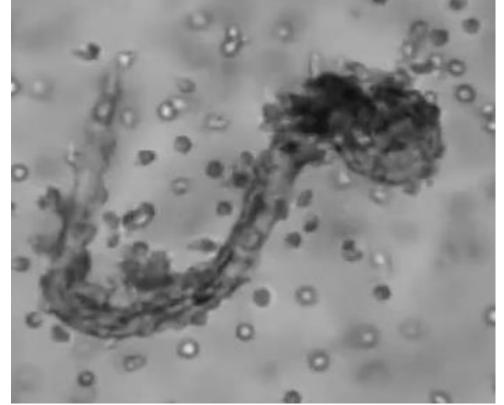


Ärztlicher Befundbericht


Untersuchung	Wert		Referenzbereich	
Histamin (ELISA)	305	ng/g	< 600	normal
Zytokinprofil im Stuhl (ECLIA)				
IL-1b im Stuhl	84,4	pg/g	< 61	erhöht
IL-6 im Stuhl	43,7	pg/g	< 67	normal
TNF alpha im Stuhl	121,4	pg/g	< 58	erhöht
IL-8 im Stuhl	33,2	pg/g	< 162	normal
IFN gamma im Stuhl	297,5	pg/g	< 253	erhöht
IL-4 im Stuhl	6,0	pg/g	< 7	normal
IL-10 im Stuhl	27,9	pg/g	8 - 30	normal
Calprotectin im Stuhl (ELISA)	43	μg/g	< 50	normal
EPX (EDN) (ELISA)	126	ng/g	< 1358	normal
Lysozym (ELISA)	178	ng/g	< 600	normal



Calprotectin

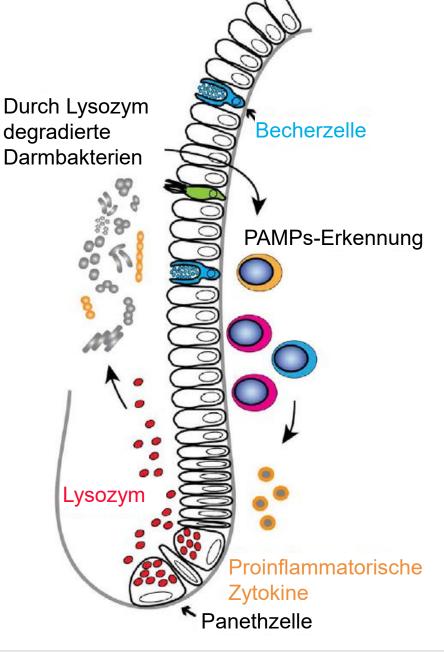


Eosinophiles Protein X (EPX)

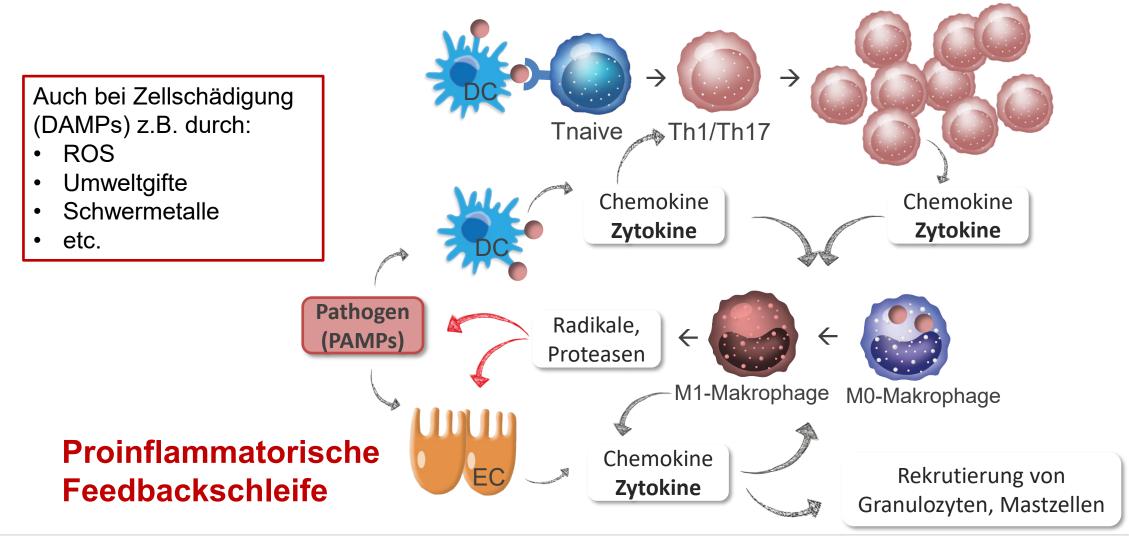
- Abwehr von Helminthen, die zu groß für die Phagozytose sind
- Bei Protozoen: hs. bei Dientamoeba fragilis
- Typischerweise nicht bei Bakterien- oder Virusinfektion
- Gleiche (Fehl-)Reaktion bei Allergien auf Nahrungsantigene
- Auch induziert durch freie Nukleotide (bei Zellschädigung)
- Kann auch bei aktiver CED erhöht sein

Youtube: How Eosinophils Coat a Worm Dr.Lokendra Gaud

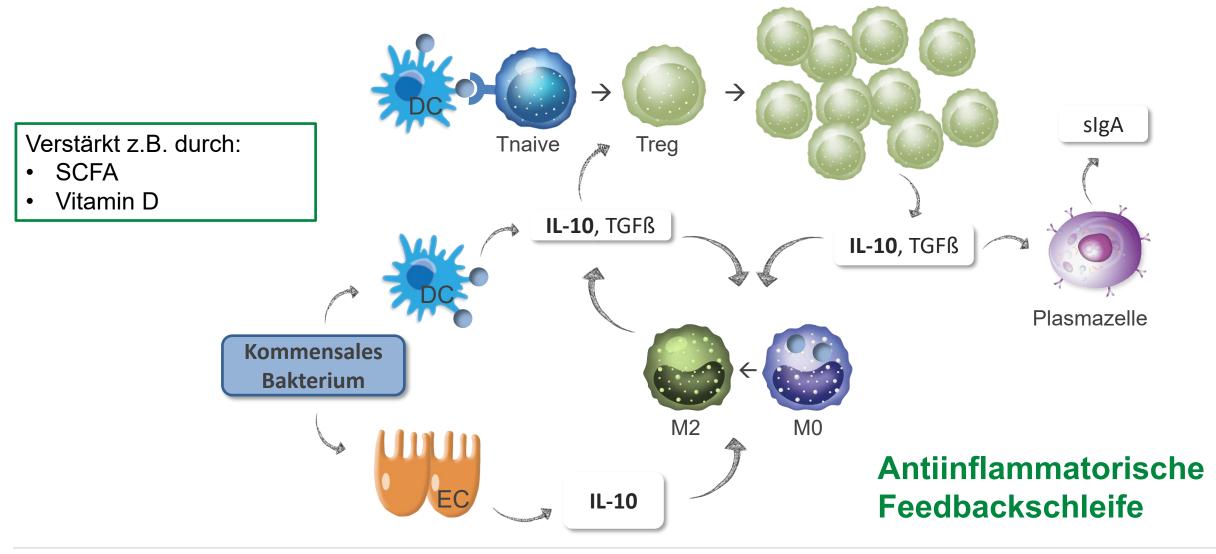
Nahrungsmittel- oder Helminth-Antigen

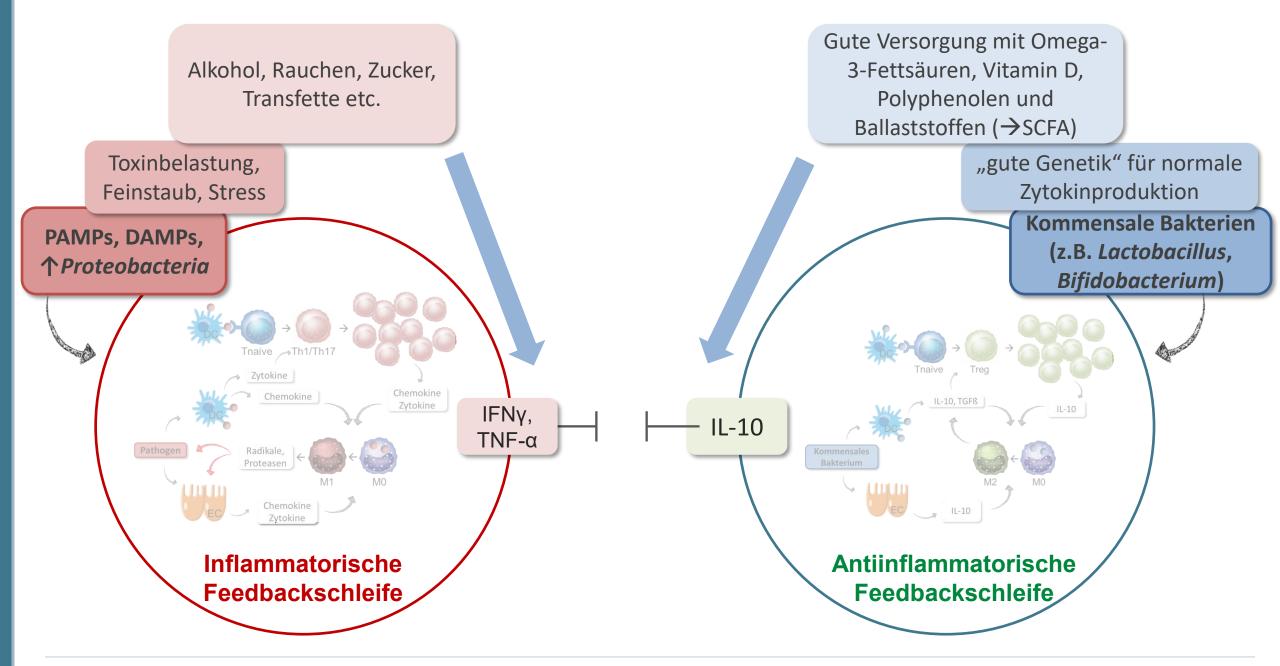


Rekrutierung von Eosinophilen


Lysozym

- Wird konstitutiv ausgeschüttet (→ Symbiose-Erhalt)
- im Darm hs. von Panethzellen gebildet
- Typisch bei CED: Panethzellen-Metaplasie → Panethzellen auch im absteigenden Dickdarm → mehr Lysozym im Kolon
- Kann Verlauf der CED anzeigen, aber:
 - ➤ Bei Morbus Chron-Patienten mit best. Genetik (ATG16L1 oder NOD2-Polymorphismen) tw. weniger Lysozym-Ausschüttung (wird in Panethzellen falsch gepackt und dadurch abgebaut)
- Mausexperimente zeigen:
 - ➤ Zu viel Lysozym → zu hohe Ausschüttung proinflammat. Zytokine
 - ➤ Zu wenig Lysozym → Vermehrung schleimabbauender Bakterien, v.a. *Ruminococcus gnavus*




Zytokine im Stuhl (IFN-γ, IL-1β, IL-4, IL-6, IL-8, IL-10, TNF-α)

Begrenzung der Inflammation durch IL-10

Ärztlicher Befundbericht

Untersuchung	Wert		Referenzbereich	
pH-Messung	6,0		5,5 - 6,5	normal
Zytokinprofil im Stuhl (ECLIA)				
IL-1b im Stuhl	462	pg/g	< 61	erhöht
IL-6 im Stuhl	28,5	pg/g	< 67	normal
TNF alpha im Stuhl	36,2	pg/g	< 58	normal
IL-8 im Stuhl	3067	pg/g	< 162	erhöht
IFN gamma im Stuhl	49,8	pg/g	< 253	normal
IL-4 im Stuhl	1,97	pg/g	< 7	normal
IL-10 im Stuhl	4,38	pg/g	8 - 30	vermindert
Calprotectin im Stuhl (ELISA)	495	μg/g	< 50	erhöht
EPX (EDN) (ELISA)	>6400	ng/g	< 1358	erhöht

IL-10 ist vermindert

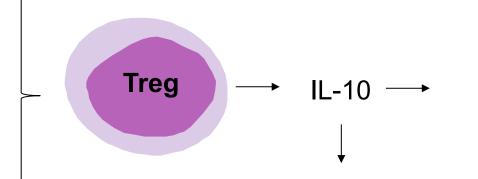
Vermindertes IL-10 deutet darauf hin, dass eine kompensatorische entzündungshemmende Gegenregulation derzeit nicht stattfindet und die Fähigkeit des Immunsystems zur Gegenregulation der Entzündung eingeschränkt ist.

Die antientzündliche Wirkung einiger Vitamine & co. besteht in der Hochregulierung von IL-10

Kommensale Darmbakterien

Vitamin A

Vitamin D3


Vitamin B9 (Folsäure)

SCFAs

...und Probiotika?

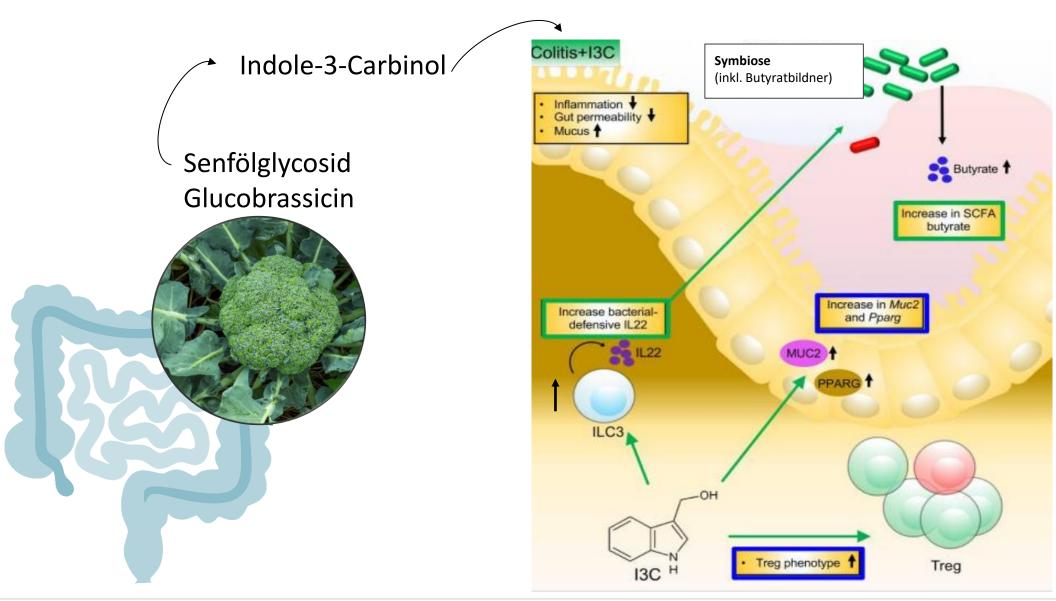
Hinweise auf IL-10-Induktion für:

- Bifidobacterium breve,
- · Lactobacillus salivarius,
- Cocktail aus Enterococcus faecalis, Bifidobacterium longum and Lactobacillus acidophilus (BIFICO)

Begrenzung einer "unangemessenen" Immunaktivierung

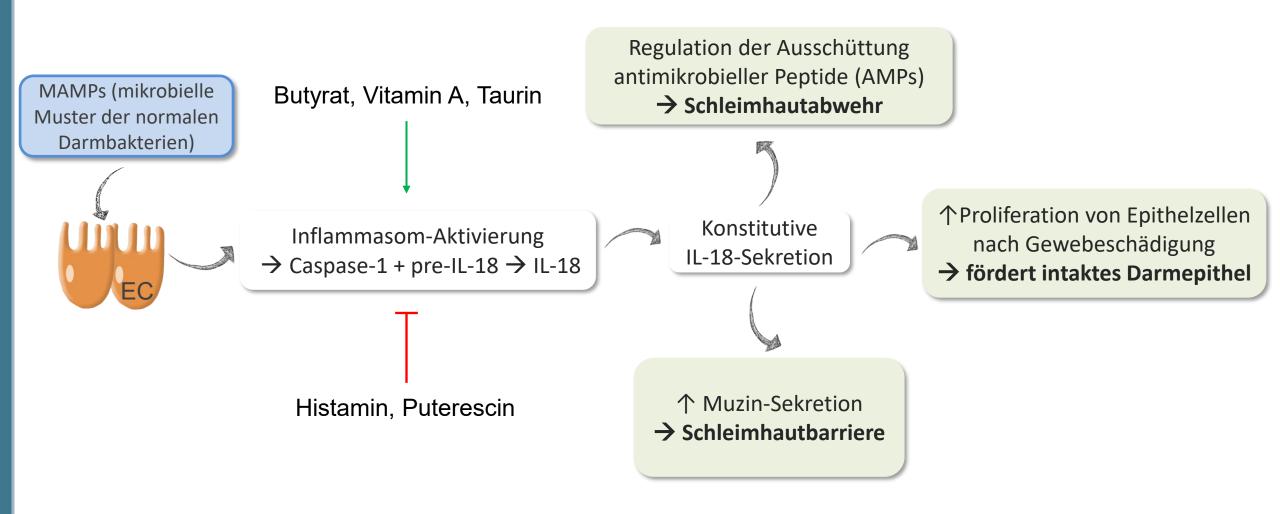
IgA-Produktion durch B-Zellen

Nichtentzündliche Immunabwehr



Die antientzündliche Wirkung vieler Pflanzenstoffe besteht in der Regulation der Zytokinausschüttung

Pflanzeninhaltsstoffe	Wirkung auf Zytokine
Aloin (Aloe Vera)	↓ IL-8
Arctigenin (Arctium lappa, Klettenwurzel)	↓ IL-6 und TNF-α
Catechin (Flavonoide, z.B. in schwarzem Tee)	JTNF-α, IL-6
Curcumin (Kurkuma) + Kurkumaöl	↓ IL-6, IL-12 und TNF-α; IL-10↑
Glycyrrhizin (Süßholzsaft)	↓ IL-6, IL-1β, TNF-α
Shogaol (Ingwer)	↓ IL-6, IL-1β, TNF-α



Antientzündliche Wirkung von Gluconinolaten (Kohl)

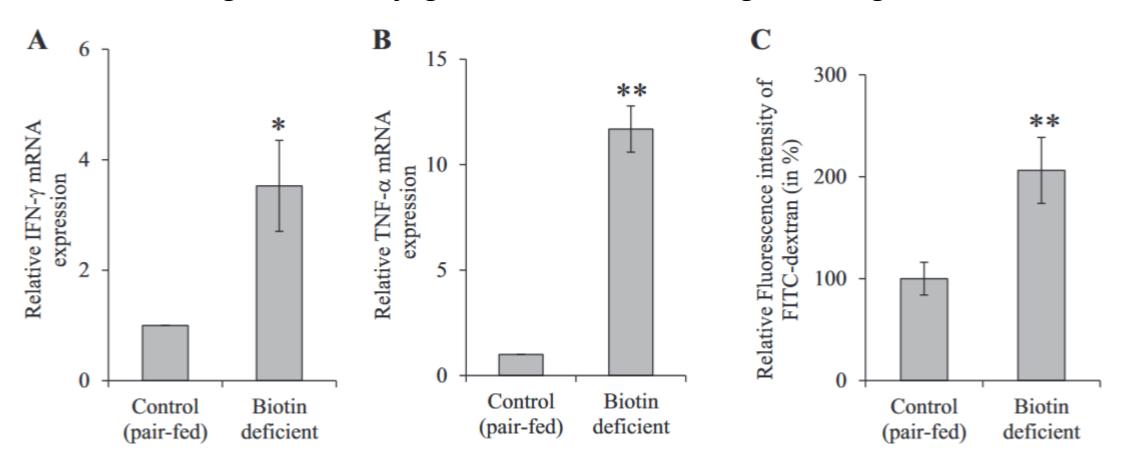
IL-18 als Immunregulator im Darmepithel

+ Hinweise auf Induktion der sIgA-Bildung an Schleimhäuten, inkl. der Darmschleimhaut (Kayamuro et al., 2010)

Ernährung beeinflusst die Mikrobiota

antiinflammatorisch

SEKUNDÄRE PFLANZENSTOFFE, VITAMINE, FETTSÄUREN, AMINOSÄUREN, FRUCHTZUCKER proinflammatorisch



Microbiota disrupting chemicals

STABILISATOREN,
KONSERVIERUNGSSTOFFE,
SÜSSUNGSMITTEL, ANTIOXIDATIONSMITTEL,
SÄUREGULATOREN, EMULGATOREN,
TRENNMITTEL, FARBSTOFFE,
BACKTRIEBMITTEL,
GESCHMACKSVERSTÄRKER

Entzündung und leaky gut durch ernährungsbedingten Biotin-Mangel

Einfluss eines ernährungsbedingten Biotinmangels auf die mRNA-Expression von IFN- γ (A) und TNF- α (B) in der Dickdarmschleimhaut, sowie die Darmdurchlässigkeit wurde mit 4-kDa-FITC-Dextran (C). Die Daten sind Mittelwerte \pm SE von mindestens 3 Mäusepaaren. (* P < 0,05; ** P < 0,01).

Eine intakte Darmfunktion ist essentiell für eine ausreichende Resorption der B-Vitamine

Labor Berlin	Ärz	Ärztlicher Befundberich			
Untersuchung	Ergebnis	Einheit	Referenzbereich		
Bioaktive Vitaminanalytik Der Test erfasst den Gehalt an bioaktivem des Wachstums selektiv Vitamin-abhängig			`		
Vitamin B1 bioaktiv i. EDTA-Blut	28.5	μg/l	> 39.8		
Vitamin B2 bioaktiv i.S.	74.3	μg/l	> 85.4		
Vitamin B3 (Nicotinamid) bioaktiv	12.8	µg/l	> 17.0		
Vitamin B5 (Pantothensäure) bioaktiv	31.5	μg/l	> 36.0		
Vitamin B6 bioaktiv i.S.	6.7	μg/l	> 10.1		
Vitamin B7 (Biotin) bioaktiv i.S.	635	ng/l	> 1250		
Vitamin B9 (Folsäure) bioaktiv i. EDTA	66.9	µg/l	> 100		
(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					

IN DIESEN LEBENSMITTELN STECKT BIOTIN

Biotingehalt pro Portion

Ärztlicher Befundbericht

	Untersuchung	Wert		Referenzbereich	
	Funktionelles Mikrobiotaprofil (PCR + Kultur)				
	Dysbiose-Index	1		1	1 2 3 4 5
	bakterielle Diversität	3,3		> 2,5	•
	Butyratbildung	vermindert		normal	•
	Mukosaprotektion	vermindert		normal	•
	Konisationsresistenz	normal		normal	•
٦Ö	ht iflammatorische Bakterien	erhöht		normal	•
	Histaminbildner	normal		normal	•
	Candida-Pilze	erhöht		normal	•
	pH-Messung	7,0		5,5 - 6,5	erhöht
	Butyratbildung (PCR)				
	Anaerobutyricum hallii	leicht vermi	ndert	normal	
	Eubacterium rectale	vermindert		normal	
	Faecalibacterium prausnitzii	normal		normal	
	Mukosaprotektion (PCR)				
	Akkermansia muciniphila	vermindert		normal	
	Faecalibacterium prausnitzii	normal		normal	
	Lactobacillus spp.	normal		normal	
	Kolonisationsresistenz (PCR)				
	Bacteroides spp.	vermindert		normal	
	Bacteroides spp. & Prevotella spp.	normal		normal	
	Bifidobacterium spp.	normal		normal	
	Lactobacillus spp.	normal		normal	
	Immunmodulierende Bakterien (Kultur)				
	Enterococcus spp.	2x10^5	KBE/g	1x10^6 - 1x10^8	
	Escherichia coli	< 1x10^4	KBE/g	1x10^6 - 1x10^8	•
	Proinflammatorische Bakterien (Kultur)				
	Enterobacteriaceae	< 1x10^6	KBE/g	<= 1x10^6	
	E.coli Biovare	< 1x10^6	KBE/g	<= 1x10^6	
	Citrobacter spp.	1x10^8	KBE/g	<= 1x10^6 erhö	ht
	Enterobacter spp.	< 1x10^6	KBE/g	<= 1x10^6	
	Klebsiella spp.	< 1x10^6	KBE/g	<= 1x10^6	
	Serratia spp.	< 1x10^6	KBE/g	<= 1x10^6	
- 1					

Ärztlicher Befundbericht

Proteus spp.	< 1x10^6	KBE/g	<= 1x10^6	
Pseudomonas spp.	< 1x10^5	KBE/g	<= 1x10^5	
Histaminbildner (Kultur)				
Hafnia alvei	< 1x10^6	KBE/g	<= 1x10^6	
Klebsiella pneumoniae	< 1x10^6	KBE/g	<= 1x10^6	
Morganella morganii	< 1x10^6	KBE/g	<= 1x10^6	
Mykologie (Kultur)				
Candida spp.	8x10^3	KBE/g	<= 1x10^3	
Candida albicans	9x10^3	KBE/g	<= 1x10^3	
Geotrichum spp.	< 1x10^3	KBE/g	<= 1x10^3	
Schimmelpilze	< 1x10^3	KBE/g	<= 1x10^3	
Kurzkettige Fettsäuren im Stuhl (GC-MS/MS	5)			
Acetat	39,5	μmol/g	> 41,4	vermindert
Butyrat	5,75	μmol/g	> 7,0	vermindert
Propionat	6,22	μmol/g	> 10,2	vermindert
Histamin (ELISA)	97	ng/g	< 600	normal
Verdauungsrückstände (NIR)				
Eiweiß	0,3	%	< 1	normal
Fett	3,9	%	< 3,5	erhöht
Wasser	84,0	%	75 - 85	normal
Zucker	2,6	%	< 2,5	erhöht
Gallensäuren (ELISA)	0,39	μmol/g	0,84 - 6,55	vermindert
Pankreaselastase (ELISA)	276	μg/g	> 200	normal
Zytokinprofil im Stuhl (ECLIA)				
IL-1b im Stuhl	87,0	pg/g	< 61	erhöht
IL-6 im Stuhl	25,7	pg/g	< 67	normal
TNF alpha im Stuhl	39,1	pg/g	< 58	normal
IL-8 im Stuhl	84,6	pg/g	< 162	normal
IFN gamma im Stuhl	213	pg/g	< 253	normal
IL-4 im Stuhl	3,83	pg/g	< 7	normal
IL-10 im Stuhl	44,1	pg/g	8 - 30	erhöht
Calprotectin im Stuhl (ELISA)	45	μg/g	< 50	normal
EPX (EDN) (ELISA)	<74	ng/g	< 1358	normal
Lactoferrin (ELISA)	<0,4	μg/g	< 7,2	normal
Lysozym (ELISA)	325	ng/g	< 600	normal
ß-Defensin (ELISA)	>600	ng/g	8 - 60	erhöht
sekretorisches IgA (ELISA)	>7500	μg/g	510 - 2040	erhöht
Alpha-1-Antitrypsin (ELISA)	160	μg/g	< 268	normal
Zonulin im Stuhl (ELISA)	55	ng/g	< 145	normal

Ärztlicher Befundbericht

Labor Berlin				
Untersuchung	Wert		Referenzbereich	
Funktionelles Mikrobiotaprofil (PCR + Kultur)				
Dysbiose-Index	1		1	1 2 3 4 5
bakterielle Diversität	3,3		> 2,5	•
Butyratbildung	vermindert		normal	•
Mukosaprotektion	vermindert		normal	•
Kolonisationsresistenz	normal		normal	•
Proinflammatorische Bakterien	erhöht		normal	•
Histaminbildner	normal		normal	•
Candida-Pilze	erhöht		normal	•
pH-Messung	7,0		5,5 - 6,5	erhöht
Butyratbildung (PCR)				
Anaerobutyricum hallii	leicht vermi	ndert	normal	
Eubacterium rectale	vermindert		normal	
Faecalibacterium prausnitzii	normal		normal	
Mukosaprotektion (PCR)				
Akkermansia muciniphila	vermindert		normal	
Faecalibacterium prausnitzii	normal		normal	
Lactobacillus spp.	normal		normal	
Kolonisationsresistenz (PCR)				
Bacteroides spp.	vermindert		normal	
Bacteroides spp. & Prevotella spp.	normal		normal	
Bifidobacterium spp.	normal		normal	
Lactobacillus spp.	normal		normal	
mmunmodulierende Bakterien (Kultur)				
Enterococcus spp.	2x10^5	KBE/g	1x10^6 - 1x10^8	
Escherichia coli	< 1x10^4	KBE/g	1x10^6 - 1x10^8	
Proinflammatorische Bakterien (Kultur)	- 2/120 -	KDL/ B	2020 0 2020 0	Keine Entzündu
Enterobacteriaceae	< 1x10^6	KBE/g	<= 1x10^6	
E.coli Biovare	< 1x10 6	KBE/g	<= 1x10^6	
		KBE/g	<= 1x10^6	
UI Sacile:	< 1x10^6			
Enterobacter spp.		KBE/g	<= 1x10^6	M
Klebsiella spp.	< 1x10^6	KBE/g	<= 1x10^6	Kein Leaky gu
Serratia spp.	< 1x10^6	KBE/g	<= 1x10^6	

Ärztlicher Befundbericht

Proteus spp.	< 1x10^6	KBE/g	<= 1x10^6	
Pseudomonas spp.	< 1x10^5	KBE/g	<= 1x10^5	
Histaminbildner (Kultur)				
Hafnia alvei	< 1x10^6	KBE/g	<= 1x10^6	
Klebsiella pneumoniae	< 1x10^6	KBE/g	<= 1x10^6	
Morganella morganii	< 1x10^6	KBE/g	<= 1x10^6	
Mykologie (Kultur)				
Candida spp.	8x10^3	KBE/g	<= 1x10^3	
Candida albicans	9x10^3	KBE/g	<= 1x10^3	
Geotrichum spp.	< 1x10^3	KBE/g	<= 1x10^3	
Schimmelpilze	< 1x10^3	KBE/g	<= 1x10^3	
Kurzkettige Fettsäuren im Stuhl (GC-MS/MS)				
Acetat	39,5	μmol/g	> 41,4	vermindert
Butyrat Ursache?	5,75	μmol/g	> 7,0	vermindert
Propionat	6,22	μmol/g	> 10,2	vermindert
Histamin (ELISA)	97	ng/g	< 600	normal
Verdauungsrückstände (NIR)				
Eiweiß	0,3	%	< 1	normal
Fett	3,9	%	< 3,5	erhöht
Wasser	84,0	%	75 - 85	normal
Zucker	2,6	%	< 2,5	erhöht
Gallensäuren (ELISA)	0,39	μmol/g	0,84 - 6,55	vermindert
Pankreaselastase (ELISA)	276	μg/g	> 200	normal
Zytokinprofil im Stuhl (ECLIA)				
IL-1b im Stuhl	87,0	pg/g	< 61	erhöht
IL-6 im Stuhl	25,7	pg/g	< 67	normal
TNF alpha im Stuhl	39,1	pg/g	< 58	normal
IL-8 im Stuhl	84,6	pg/g	< 162	normal
IFN gamma im Stuhl	213	pg/g	< 253	normal
IL-4 im Stuhl	3,83	pg/g	< 7	normal
IL-10 im Stuhl	44,1	pg/g	8 - 30	erhöht
Calprotectin im Stuhl (ELISA)	45	μg/g	< 50	normal
EPX (EDN) (ELISA)	<74	ng/g	< 1358	normal
Lactoferrin (ELISA)	<0,4	μg/g	< 7,2	normal
Lysozym (ELISA)	325	ng/g	< 600	normal
ß-Defensin (ELISA)	>600	ng/g	8 - 60	erhöht
sekretorisches IgA (ELISA)	>7500	μg/g	510 - 2040	erhöht
Alpha-1-Antitrypsin (ELISA)	160	μg/g	< 268	normal
Zonulin im Stuhl (ELISA)	55	ng/g	< 145	normal

Proinflammatorischen Bakterien erhöht

Ernährung

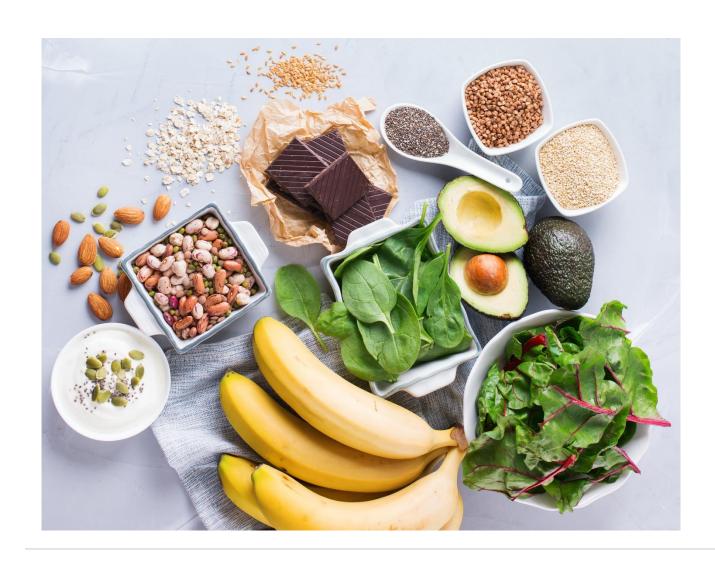
- Grüne Kohlgemüse (Brokkoli, Blumenkohl, Grünkohl, Kohlrabi) stärken die Immunabwehr.
- Nahrungsmittelzusätze, Konservierungsstoffe, Farbstoffe, Süßstoffe, etc. unbedingt meiden!
- Zuckerzufuhr reduzieren!

Darmreinigung

- Zeolith, Bentonit, Heilerde oder Aktivkohle-haltige Präparaten binden Erreger und Giftstoffe. (binden auch Nährstoffe → ggfls. zusätzliche Versorgung mit Mineralstoffen und Vitaminen)
- Ätherische Öle aus Oregano, Thymian, Rosmarin oder Zistrosenkraut (Cistus-Tee) wirken antibiotisch.
- Flohsamenschalen und Leinsamen vergrößern das Stuhlvolumen und regen die Darmtätigkeit an.
 (binden viel Wasser → mind. 2, besser 3 Liter Wasser/Tee pro Tag)
- Bittersalz und Rizinusöl regen die Darmtätigkeit an und wirken abführend.
 (CAVE: Reizung der Darmschleimhaut möglich)
- Vitamin D und A reduzieren Proteobakterien und stärken gleichzeitig die Darmschleimhaut.

Symbiose wiederherstellen

- probiotische Lebensmitteln können helfen, Proteobakterien zu verdrängen
 (CAVE: individuelle Verträglichkeit prüfen! Bei Histamin-Abbaustörung nicht geeignet).
- probiotische Präparate mit Lactobacillus- und Bifidobacterium-Stämmen oder apathogenen E. coli
 (CAVE: individuelle Verträglichkeit prüfen! Zutatenliste beachten! Einige Produkte Zusätze wie Alkohol,
 Laktose, Gelatine oder Titandioxid.)

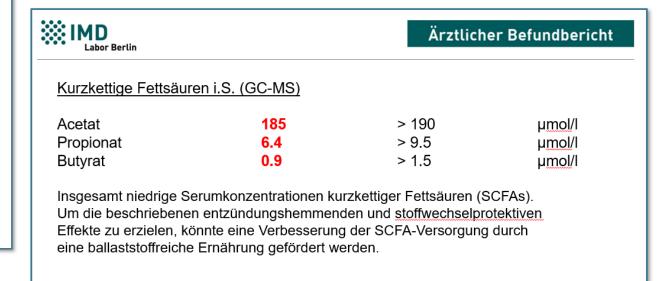

Butyratbildende Bakterien vermindert

Ernährung

- Erhöhte Zufuhr möglichst vielseitiger Ballaststoffe
 - → Insbesondere Fructooligosacchariden (niedrig-komplexe, lösliche Ballaststoffe) können von Butyratbildnern direkt verstoffwechselt werden;
 - z.B. in Spargel, Banane, Artischocke, Knoblauch, Zwiebeln
 - (CAVE: FOS können stark blähend wirken, deshalb mit kleinen Mengen beginnen und langsam steigern)
- Auch probiotische Bifidobakterien liefern essenzielle Nährstoffe für die Butyratbildner.
 (individuelle Verträglichkeit beachten!)
- Kurzfristig kann Butyrat auch als Kapselpräparat zugeführt werden.

SCFAs werden für die Schleimhautintegrität benötigt

Short Chain Fatty Acids (SCFAs)


SCFAs im Stuhl

Labor Berlin			Arztlich	er Befundberich
urzkettige Fettsäu	ren (GC-MS)			
Acetat	5.9	µ <u>mol</u> /g	> 7.5	vermindert
Propionat	3.1	µ <u>mol</u> /g	> 2.5	normal
Butyrat	1.8	μ <u>mol</u> /g	> 2.5	vermindert

Die kurzkettigen Fettsäuren sind vermindert.

Butyrat, Acetat und Propionat entstehen durch mikrobiellen Abbau von Ballaststoffen im Dickdarm. Sie sind wichtig für den Energiestoffwechsel der Kolonozyten, senken den pH-Wert des Dickdarms, beeinflussen die Darmmotilität und haben antientzündliche sowie schleimhautprotektive Wirkungen. Zufuhr von Pflanzenfasern, resistenter Stärke, FOS, Bifido- und Laktobakterien und viele sekundäre Pflanzenstoffe fördern die mikrobielle Synthese kurzkettiger Fettsäuren.

SCFAs im Serum

Ärztlicher Befundbericht

Untersuchung	Wert		Referenzbereich	
Quantitatives Mikrobiotaprofil + Mykologie	(Vultur)			
Immunmodulierende Bakterien	(Kultur)			
Enterococcus spp.	< 1x10^4	KBE/g	1x10^6 - 1x10^8	•
Escherichia coli	2x10^8	KBE/g	1x10^6 - 1x10^8	
Verwertung von Kohlehydraten	ZAZO O	1102/8	1,10 0 1,10 0	
Bacteroides spp.	> 1x10^8	KBE/g	>= 1x10^8	
Bifidobacterium spp.	> 1x10^8	KBE/g	>= 1x10^8	
Lactobacillus spp.	> 1x10^5	KBE/g	>= 1x10^5	
Verwertung von Eiweiß (Proteobacteria)				
Enterobacteriaceae	< 1x10^6	KBE/g	<= 1x10^6	
E.coli Biovare	< 1x10^6	KBE/g	<= 1x10^6	
Citrobacter spp.	< 1x10^6	KBE/g	<= 1x10^6	
Enterobacter spp.	< 1x10^6	KBE/g	<= 1x10^6	
Klebsiella spp.	< 1x10^6	KBE/g	<= 1x10^6	
Serratia spp.	< 1x10^6	KBE/g	<= 1x10^6	
Proteus spp.	< 1x10^6	KBE/g	<= 1x10^6	
Pseudomonas spp.	< 1x10^5	KBE/g	<= 1x10^5	
weitere Darmbakterien		,,,		
alpha-hämolysierende Streptokokken	9x10^6	KBE/g	<= 1x10^5	
beta-hämolysierende Streptokokken	< 1x10^5	KBE/g	<= 1x10^5	
Mykologie (Kultur)				
Candida spp.	< 1x10^3	KBE/g	<= 1x10^3	
Candida albicans	2x10^3	KBE/g	<= 1x10^3	
Geotrichum spp.	< 1x10^3	KBE/g	<= 1x10^3	
Schimmelpilze	< 1x10^3	KBE/g	<= 1x10^3	
pH-Messung	7,5		5,5 - 6,5	erhöht
	•			

Ärztlicher Befundbericht

Histamin (ELISA)	221	ng/g	< 600	normal
Verdauungsrückstände (NIR)				
Eiweiß	0,6	%	< 1	normal
Fett	5,2	%	< 3,5	erhöht
Wasser	76,7	%	75 - 85	normal
Zucker	2,2	%	< 2,5	normal
Gallensäuren (ELISA)	8,59	μmol/g	0,84 - 6,55	erhöht
Pankroasolastaso (FLISA)	356	ua/a	> 200	normal
Zytokinprofil im Stuhl (ECLIA)				
IL-1b im Stuhl	557	pg/g	< 61	erhöht
IL-6 im Stuhl	388	pg/g	< 67	erhöht
TNF alpha im Stuhl	263	pg/g	< 58	erhöht
IL-8 im Stuhl	545	pg/g	< 162	erhöht
IFN gamma im Stuhl	3641	pg/g	< 253	erhöht
IL-4 im Stuhl	92,0	pg/g	< 7	erhöht
IL-10 im Stuhl	608	pg/g	8 - 30	erhöht
Calprotectin im Stuhl (ELISA)	69	μg/g	< 50	erhöht
EPX (EDN) (ELISA)	117	ng/g	< 1358	normal
Lactoferrin (ELISA)	4,8	μg/g	< 7,2	normal
Lysozym (ELISA)	1391	ng/g	< 600	erhöht
sekretorisches IgA (ELISA)	4636	μg/g	510 - 2040	erhöht
Alpha-1-Antitrypsin (ELISA)	182	μg/g	< 268	normal

Ursache?

Hinweis auf einen entzündlichen Darmprozess

Ernährung

- Erhöhte Zufuhr vielseitiger Ballaststoffquellen fördert einen antientzündlichen bakteriellen Stoffwechsel
- Pektin besitzt direkte antientzündliche Wirkung (Apfel, Aprikose, Möhre, Orange)
- Immunstimulierende Antigene meiden: 4 Wochen Verzicht auf Weizen und Milchprodukte
- Histaminarme Ernährung, bis die Entzündung abgeklungen ist

Antientzündliche Behandlung

- Kamillenblüten, Kurkuma, Myrrhe, Weihrauch
- Omega-3-Fettsäuren
- Zink wirkt antientzündlich und stärkt Zell-Zell-Verbindungen der Darmschleimhaut.
- Selen, Vitamin C und Vitamin E wirken antioxidativ und damit antientzündlich.
- Glutamin hemmt proinflammatorische Signalwege und wirkt so entzündungsregulierend.
- Kurzfristig: Sodiumbutyrat
- Für folgende Probiotika gibt es publizierte* Hinweise für eine anti-entzündliche Wirkung an der Darmschleimhaut (keine vollständige Liste):
- E. coli Nissle 1917 (Mutaflor®)
- Lactobacillus rhamnosus GG (LGG® Lactobacillus GG; Essential-Biotic® L. Rhamnosus GG)

Ärztlicher Befundbericht

Untersuchung	Wert	Wert		Referenzbereich	
Quantitatives Mikrobiotaprofil + Mykologie	(Kultur)				
Immunmodulierende Bakterien					
Enterococcus spp.	1x10^8	KBE/g	1x10^6 - 1x10^8		
Escherichia coli	2x10^6	KBE/g	1x10^6 - 1x10^8		
Verwertung von Kohlehydraten					
Bacteroides spp.	> 1x10^8	KBE/g	>= 1x10^8		
Bifidobacterium spp.	> 1x10^8	KBE/g	>= 1x10^8		
Lactobacillus spp.	6x10^4	KBE/g	>= 1x10^5		
Verwertung von Eiweiß (Proteobacteria)					
Enterobacteriaceae	< 1x10^6	KBE/g	<= 1x10^6		
E.coli Biovare	< 1x10^6	KBE/g	<= 1x10^6		
Citrobacter spp.	3x10^6	KBE/g	<= 1x10^6		
Enterobacter spp.	< 1x10^6	KBE/g	<= 1x10^6		
Klebsiella spp.	< 1x10^6	KBE/g	<= 1x10^6		
Serratia spp.	< 1x10^6	KBE/g	<= 1x10^6		
Proteus spp.	< 1x10^6	KBE/g	<= 1x10^6		
Pseudomonas spp.	< 1x10^5	KBE/g	<= 1x10^5		
weitere Darmbakterien					
alpha-hämolysierende Streptokokken	> 1x10^7	KBE/g	<= 1x10^5	•	
beta-hämolysierende Streptokokken	< 1x10^5	KBE/g	<= 1x10^5		
Mykologie (Kultur)					
Candida spp.	< 1x10^3	KBE/g	<= 1x10^3		
Candida albicans	< 1x10^3	KBE/g	<= 1x10^3		
Geotrichum spp.	< 1x10^3	KBE/g	<= 1x10^3		
Schimmelpilze	< 1x10^3	KBE/g	<= 1x10^3		
pH-Messung	7,5		5,5 - 6,5	erhöht	

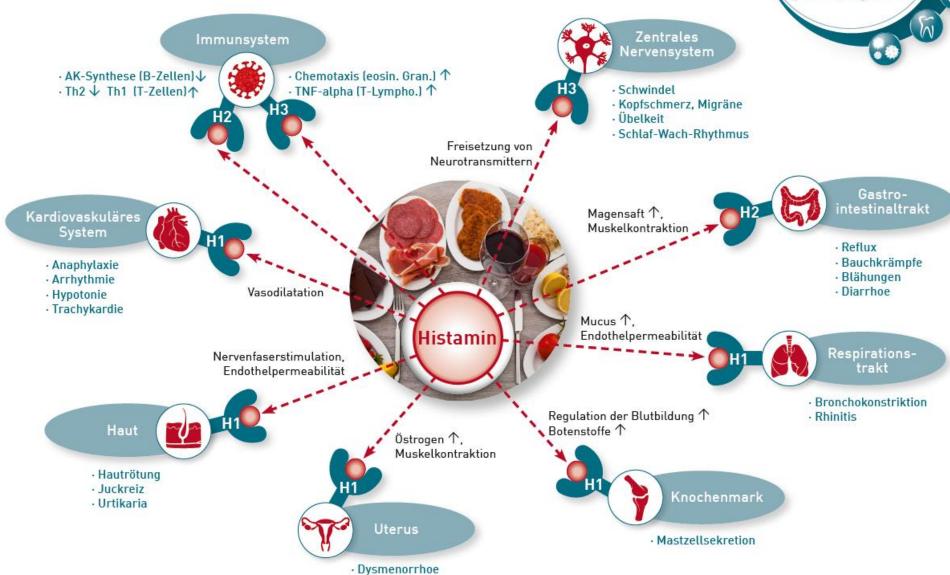
Ärztlicher Befundbericht

Histamin (ELISA)	3274	ng/g	< 600	erhöht
Verdauungsrückstände (NIR)				
Eiweiß	0,3	%	< 1	normal
Fett	3,0	%	< 3,5	normal
Wasser	82,8	%	75 - 85	normal
Zucker	2,7	%	< 2,5	erhöht
Gallensäuren (ELISA)	1,28	μmol/g	0,84 - 6,55	normal
Pankreaselastase (ELISA)	646	μg/g	> 200	normal
Zytokinprofil im Stuhl (ECLIA)				
IL-1b im Stuhl	75,5	pg/g	< 61	erhöht
IL-6 im Stuhl	11,3	pg/g	< 67	normal
TNF alpha im Stuhl	27,3	pg/g	< 58	normal
IL-8 im Stuhl	112	pg/g	< 162	normal
IFN gamma im Stuhl	160	pg/g	< 253	normal
IL-4 im Stuhl	0,94	pg/g	< 7	normal
IL-10 im Stuhl	4,51	pg/g	8 - 30	vermindert
Calprotectin im Stuhl (ELISA)	36	μg/g	< 50	normal
EPX (EDN) (ELISA)	696	ng/g	< 1358	normal
Lysozym (ELISA)	635	ng/g	< 600	erhöht
sekretorisches IgA (ELISA)	4341	μg/g	510 - 2040	erhöht
Alpha-1-Antitrypsin (ELISA)	131	μg/g	< 268	normal

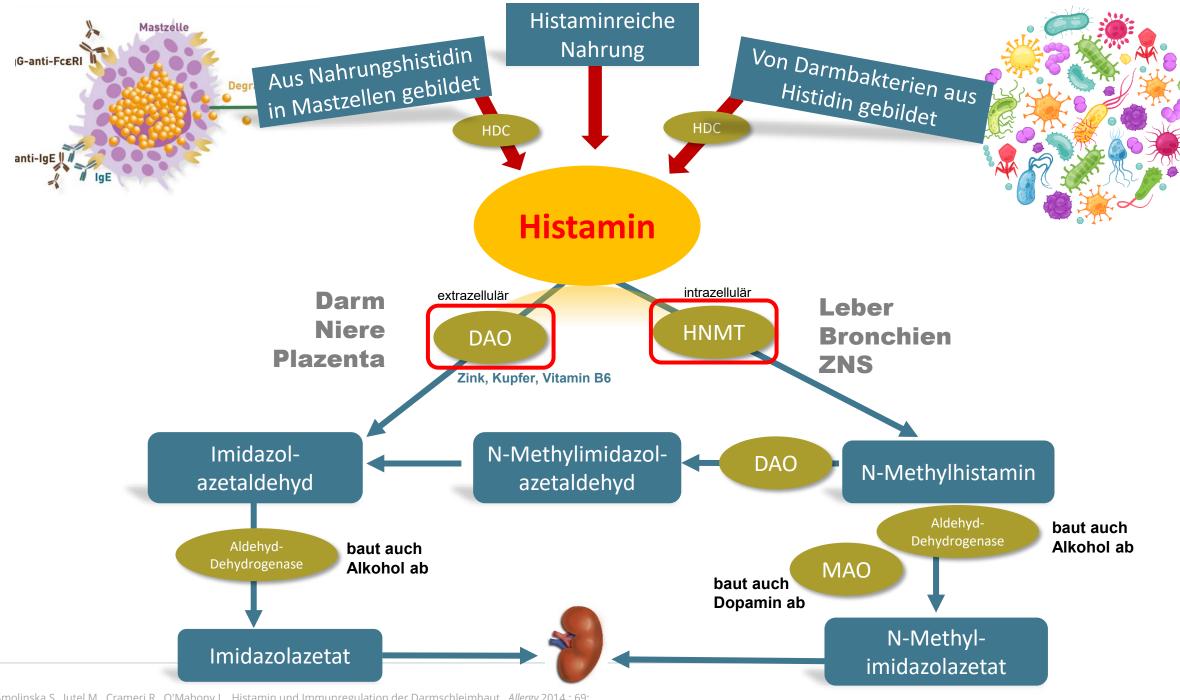
Ursache histaminbildende Bakterien?

Erhöhte Menge von Histamin

Ernährungsumstellung auf Histamin-arme Kost


- Gut verträglich: die meisten frischen Gemüsesorten, Kartoffeln, Reis, Hafer.
- Reduzieren: fermentierte, lange gelagerte, lange gereifte, konservierte und gegorene Lebensmittel
 - Räucherfisch, Dosenfisch (Makrele, Hering, Sardinen, Thunfisch)
 - gereifter Käse (Gouda, Camenbert, Cheddar, Emmentaler, Schweizer, Parmesan)
 - Fleischprodukte (Wurst, Salami, Räucherschinken)
 - Alkohol (Rotwein, Champagner, Bier, bes. Hefeweizen)
 - eingelegtes Gemüse (Sauerkraut, Sauerkrautsaft, Essiggurken, Dosentomaten, auch Tomatenmark, Ketchup)
 - Essig (Balsamico, Tafelessig)
 - Kakao, Schokolade
- Pseudoallergene können Histamin aus Mastzellen freisetzen und sollten gemieden werden.
 - Aromastoffe, Konservierungsstoffe, Farbstoffe
 - z.B. Schokoriegel, abgepackte Kuchen, Instantsuppen, Wurstwaren, pflanzliche Fleischalternativen
- Auch einige Obst- und Gemüsesorten können die Freisetzung von Histamin fördern (Verträglichkeit individuell!)
 - Gemüse (Aubergine, Spinat, Tomate)
 - Obst (getrocknete Früchte, Ananas, Avocado, Zitrusfrüchte, Erdbeeren, Banane)
- Wenn Probiotika, dann Präparate ohne histaminbildende Bakterien
 - reine Bifidobacterium-Präparate, genetisch getestete Lactobacillus-Stämme
- Über den Tag aufgenommenes Histamin kumuliert → Gesamtmenge gering halten

Histamin



Histaminreiche Lebensmittel

Ajvar - Paprikamark enthält nur wenig Histamin Pizza mit gekochtem Schinken, Ajvar, Zwiebeln, Pilzen, ... und Mozarella enthält wenig Histamin

Take home

Entzündung diagnostizieren und monitoren!

Ursache von Entzündungsprozessen suchen

Entzündungsauslöser eliminieren

Antientzündliche Ernährung

Stress reduzieren, Bewegung

Darmschleimhaut reparieren / Mikronährstoffe

Ballaststoffe (SCFAs)

Symbiose herstellen

Psyche trifft **Immunsystem**

Interdisziplinäre Sicht auf Stress, Mikrobiom und stille Entzündung

ONLINE-ANMELDUNG!

Tagungsort

ScanHotels City

Lange Straße 40 · 18055 Rostock

www.IMD-Berlin.de

Samstag Rostock 07.03.2026

Nitrosativer Stress Depression Oxidativer Weitere Informationen unter: www.egfm.eu MTHFR Neurotransmitter

Termine 2025/2026

Europäische Gesellschaft Funktionelle Medizin e.V.

Ausbildung zum Therapeuten für Funktionelle Medizin

Vertiefungsseminar Genetik/Stress	18.09. – 21.09.2025	Südharz, Schindelbruch
5. EGFM-Jahreskongress	26.09. – 28.09.2025	Kassel
Kompaktseminar	14.11. – 21.11.2025	Bingen
3-teilige Ausbildung	27.02 01.03.2026 20.03 22.03 2026 29.05 31.05.2026	Potsdam Potsdam Potsdam
Kongress	25.09. – 27.09.2026	Kassel
Kompaktseminar	13.11. – 20.11.2026	???

Online- Ausbildung EGFM

- Online-Ausbildung zum Therapeuten/Coach für Funktionelle Medizin im Eigenstudium
- 31 Vorträge (Aufzeichnung), die komplett, als Block oder als Einzelvorträge gebucht werden können

